CSE 321 Discrete Structures

February $1^{\text {st }}, 2010$
Lecture 12: Integer Division

Outline

- Quickly review set theory (see Lecture 6)
- The integers and division: read Rosen 3.4
- Andrew will discuss a homework problem

Announcement: Practice midterms will be posted later today

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
- Cryptography
- Hashing
- Security
- Important tool set

Divisibility

Let a, b be two integers, and $\mathrm{a} \neq 0$. a divides b if there exists an integer c s.t. $\mathrm{a}^{*} \mathrm{c}=\mathrm{b}$

Notation: a | b

Divisbility

The Division "Algorithm". If a, d are integers and $\mathrm{d}>0$, then there exists unique q , r s.t.
(a) $0 \leq r<d$ and
(b) $a=d^{*} q+r$

$$
\left.\begin{array}{|l|}
\hline a=\text { dividend } \\
d=\text { divisor } \\
q=q u o t i e n t
\end{array} \quad q=a \operatorname{div} d \right\rvert\,
$$

Primality

- An integer p is prime if its only divisors are 1 and p
- An integer that is greater than 1 , and not prime is called composite

Fundamental theorem of arithmetic:
Every positive integer greater than one has a unique prime factorization

Factorization

- If n is composite, it has a factor of size at most sqrt(n)

Euclid's theorem

There are an infinite number of primes.
Proof by contradiction:

- Suppose there are a finite number of primes: $p_{1}, p_{2}, \ldots p_{n}$
- Consider the number $p=1+p_{1} p_{2} \ldots p_{n}$
- Case 1: p is prime; contradiction
- Case 2: p is not prime. Then it must be divisible by a prime number; but none of p_{1}, $p_{2}, \ldots p_{n}$; contradiction

Greatest Common Divisor

- GCD (a, b) : Largest integer d such that $d \mid a$ and d|b
- $\operatorname{GCD}(100,125)=$
- $\operatorname{GCD}(17,49)=$
- $\operatorname{GCD}(11,66)=$

Key properties:

- express GCD in terms of the prime factors
- $\operatorname{GCD}(\mathrm{a}, \mathrm{b})=\operatorname{GCD}(\mathrm{a}-\mathrm{b}, \mathrm{b})$ when $\mathrm{a}>\mathrm{b}$
- $\operatorname{GCD}(a, b)=\operatorname{GCD}(r, b)$ when $a \bmod b=r$

Euclid's Algorithm

- $\operatorname{GCD}(\mathrm{x}, \mathrm{y})=\mathrm{GCD}(\mathrm{y}, \mathrm{x} \bmod \mathrm{y})$
int GCD(int a, int b$)\{/ * \mathrm{a}>=\mathrm{b}, \quad \mathrm{b}>0$ */ int tmp; int $\mathrm{x}=\mathrm{a} ; \quad$ int $\mathrm{y}=\mathrm{b}$;
while $(\mathrm{y}>0)\{$
\% means mod in Java tmp = x \% y;
$\mathrm{x}=\mathrm{y}$;
$y=\operatorname{tmp} ;$
\}
return x ;
How many steps ? In class...
(Ch.4.3, "Lame's Theorem")

Euclid's Algorithm

- A variant which uses only addition/ subtraction (no multiplication/division)
int $\operatorname{GCD}($ int a, int b$)\{$
int $\mathrm{x}=\mathrm{a} ; \quad$ int $\mathrm{y}=\mathrm{b}$;
while (x != y) $\{$ if $(x>y) x-=y$; else y - $=x$;
$\}$
return x ;

Extended Euclid's Algorithm

- If $\operatorname{GCD}(\mathrm{x}, \mathrm{y})=\mathrm{d}$, there exist integers s, t, such sx + ty = d;

```
int \times int EGCD(int a, int b) {/* returns (s,t) */
    if (a== b) return (1,0);
    if (a>b) {( }\textrm{s},\textrm{t})=\operatorname{EGCD}(\textrm{a}-\textrm{b},\textrm{b})
        return (s, t-s); }
    else {(s,t)=EGCD(a,b-a);
        return (s-t, t); }
```

Prove correctness in class

