CSE 321 Discrete Structures

February 17th, 2010 Lecture 17: Counting

Counting Rules

Product Rule: If there are n_1 choices for the first item and n_2 choices for the second item, then there are n_1n_2 choices for the two items

Sum Rule: If there are n_1 choices of an element from S_1 and n_2 choices of an element from S_2 and $S_1 \cap S_2$ is empty, then there are $n_1 + n_2$ choices of an element from $S_1 \cup S_2$

Counting examples

License numbers have the form LLL DDD, how many different license numbers are available?

There are 38 students in a class, and 38 chairs, how many different seating arrangements are there if everyone shows up?

Important cases of the Product Rule

Cartesian product

$$|\mathsf{A}_1 \times \mathsf{A}_2 \times \ldots \times \mathsf{A}_n| = |\mathsf{A}_1||\mathsf{A}_2|\ldots|\mathsf{A}_n|$$

- Subsets of a set S
 |*P*(S)|= 2^{|S|}
- Strings of length n over Σ $|\Sigma^n| = |\Sigma|^n$

Counting Functions

Suppose |S| = n, |T| = m How many functions from S to T?

How many one-to-one functions from S to T?

More complicated counting examples

- BASIC variable names
 - Variables can be one or two characters long
 - The first character must be a letter
 - The second character can be a letter or a digit
 - The keywords "TO", "IF", and "DO" are excluded
- Passwords must be 4 to 6 characters long, and must contain at least one letter and at least one digit. (Case insensitive, no special characters)

Inclusion-Exclusion Principle

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

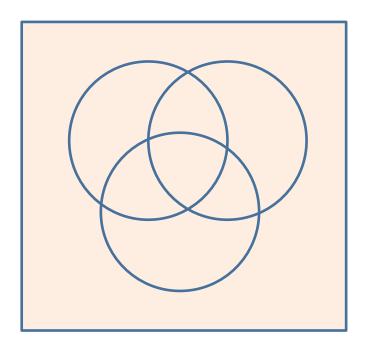


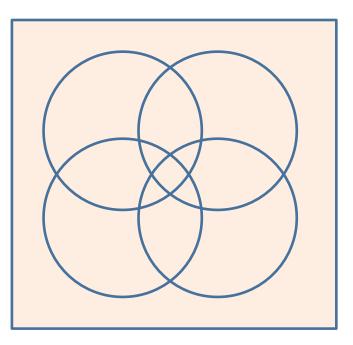
 How many binary strings of length 9 start with 00 or end with 11

Inclusion-Exclusion

 A class has of 40 students has 20 CS majors, 15 Math majors. 5 of these students are dual majors. How many students in the class are neither math, nor CS majors?

Generalizing Inclusion Exclusion





Pigeon Hole Principle

If k is a positive integer and k+1 or more objects are placed into k boxes, then at least one box has two or more objects

If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N/k \rceil$ objects

Prove that if you have 800 people, at least three share a common birthday.

Clever PHP Applications

 Every sequence of n² + 1 distinct numbers contains a subsequence of length n+1 that is either strictly increasing or strictly decreasing.

$$n=4, n^2+1=17$$

4,22 8, 15,19,11, 2, 1, 9, 20, 10, 7,16 3, 6, 5,14

This shows a decreasing subsequence of length 4 Note: there are also other increasing or decreasing subsequences

Proof

- Let $a_1, \ldots a_m$ be a sequence of n^2+1 distinct numbers
- Let i_k be the length of the longest increasing sequence starting at a_k
- Let d_k be the length of the longest decreasing sequence starting at a_k
- Suppose $i_k \le n$ and $d_k \le n$ for all k
- There must be k and j, k < j, with $i_k = i_j$ and $d_k = d_j$
- This is a contradiction:
 - if $a_k < a_l$ then $i_k > i_j$ (simply start at a_k continue with the longest increasing sequence starting at a_l)
 - if $a_k > a_l$ then $d_k > d_j$ (simply start at a_k continue with the longest decreasing sequence starting at a_l)

Permutations vs. Combinations

 How many ways are there of selecting 1st, 2nd, and 3rd place from a group of 10 sprinters?

 How many ways are there of selecting the top three finishers from a group of 10 sprinters?

r-Permutations

- An r-permutation is an ordered selection of r elements from a set
- P(n, r), number of r-permutations of an n element set

$$P(n,r) = n(n-1)(n-2)\cdots(n-r+1) = \frac{n!}{(n-r)!}$$

r-Combinations

- An r-combination is an unordered selection of r elements from a set (or just a subset of size r)
- C(r, n), number of r-combinations of an n element set

$$C(n,r) = \binom{n}{r} = \frac{n!}{(n-r)!r!}$$

How many

- Binary strings of length 10 with 3 0's
- Binary strings of length 10 with 7 1's
- How many different ways of assigning 38 students to the first row in the class (the first row can seat 5 students)
- How many different ways of assigning 38 students to a table that seats 5 students

Prove C(n, r) = C(n, n-r) [Proof 1]

Proof by formula

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

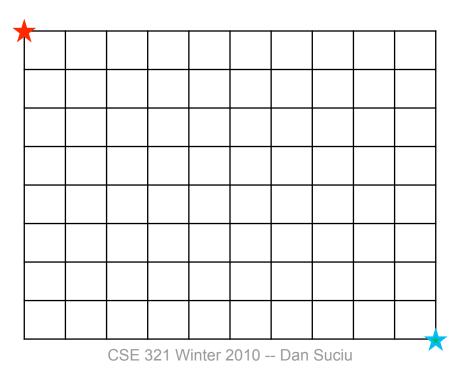
$$\binom{n}{n-r} = \frac{n!}{(n-r)!(n-(n-r))!} = \frac{n!}{(n-r)!r!}$$

Prove C(n, r) = C(n, n-r) [Proof 2]

Combinatorial proof

Counting paths

 How many paths are there of length n +m-2 from the upper left corner to the lower right corner of an n × m grid?



Binomial Theorem

$$(x+y)^{n} = \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^{j}$$

= $\binom{n}{0} x^{n} + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^{2} + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^{n}$

Binomial Coefficient Identities from the Binomial Theorem

$$\sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k = (x+y)^n$$

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$$

$$\sum_{k=0}^{n} 2^k \binom{n}{k} = 3^n$$

CSE 321 Winter 2010 -- Dan Suciu

2/17/2010

Pascal's Identity and Triangle

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Same thing, nicer: C(n,k) = C(n-1,k-1) + C(n-1,k)

Recap

Permutations

$$P(n,r) = n(n-1)(n-2)\cdots(n-r+1) = \frac{n!}{(n-r)!}$$

Combinations

$$C(n,r) = \binom{n}{r} = \frac{n!}{(n-r)!r!}$$

How many

- Let s_1 be a string of length n over Σ_1
- Let s_2 be a string of length m over Σ_2
- Assuming Σ_1 and Σ_2 are distinct, how many interleavings are there of s₁ and s₂?