CSE 321 Discrete Structures

February $17^{\text {th }}, 2010$
Lecture 17: Counting

Counting Rules

Product Rule: If there are n_{1} choices for the first item and n_{2} choices for the second item, then there are $n_{1} n_{2}$ choices for the two items

Sum Rule: If there are n_{1} choices of an element from S_{1} and n_{2} choices of an element from S_{2} and $S_{1} \cap S_{2}$ is empty, then there are $n_{1}+n_{2}$ choices of an element from $\mathrm{S}_{1} \cup \mathrm{~S}_{2}$

Counting examples

License numbers have the form LLL DDD, how many different license numbers are available?

There are 38 students in a class, and 38 chairs, how many different seating arrangements are there if everyone shows up?

Important cases of the Product Rule

- Cartesian product

$$
\left|A_{1} \times A_{2} \times \ldots \times A_{n}\right|=\left|A_{1}\right|\left|A_{2}\right| \ldots\left|A_{n}\right|
$$

- Subsets of a set S

$$
|P(S)|=2^{|S|}
$$

- Strings of length n over Σ

$$
\left|\Sigma^{n}\right|=|\Sigma|^{n}
$$

Counting Functions

Suppose $|\mathrm{S}|=\mathrm{n},|\mathrm{T}|=\mathrm{m}$
How many functions from S to T ?

How many one-to-one functions from S to T ?

More complicated counting examples

- BASIC variable names
- Variables can be one or two characters long
- The first character must be a letter
- The second character can be a letter or a digit
- The keywords "TO", "IF", and "DO" are excluded
- Passwords must be 4 to 6 characters long, and must contain at least one letter and at least one digit. (Case insensitive, no special characters)

Inclusion-Exclusion Principle

$$
\left|\mathrm{A}_{1} \cup \mathrm{~A}_{2}\right|=\left|\mathrm{A}_{1}\right|+\left|\mathrm{A}_{2}\right|-\left|\mathrm{A}_{1} \cap \mathrm{~A}_{2}\right|
$$

- How many binary strings of length 9 start with 00 or end with 11

Inclusion-Exclusion

- A class has of 40 students has 20 CS majors, 15 Math majors. 5 of these students are dual majors. How many students in the class are neither math, nor CS majors?

Generalizing Inclusion Exclusion

Pigeon Hole Principle

If k is a positive integer and $k+1$ or more objects are placed into k boxes, then at least one box has two or more objects

If N objects are placed into k boxes, then there is at least one box containing at least $\lceil\mathrm{N} / \mathrm{k}\rceil$ objects

Prove that if you have 800 people, at least three share a common birthday.

Clever PHP Applications

- Every sequence of $n^{2}+1$ distinct numbers contains a subsequence of length $n+1$ that is either strictly increasing or strictly decreasing.

$$
\mathrm{n}=4, \mathrm{n}^{2}+1=17
$$

$4,22,8,15,19$, $11,2,1,9,20,10,7,16$, $3,6,5,14$

This shows a decreasing subsequence of length 4
Note: there are also other increasing or decreasing subsequences

Proof

- Let $a_{1}, \ldots a_{m}$ be a sequence of $n^{2}+1$ distinct numbers
- Let i_{k} be the length of the longest increasing sequence starting at a_{k}
- Let d_{k} be the length of the longest decreasing sequence starting at a_{k}
- Suppose $\mathrm{i}_{\mathrm{k}} \leq \mathrm{n}$ and $\mathrm{d}_{\mathrm{k}} \leq \mathrm{n}$ for all k
- There must be k and $\mathrm{j}, \mathrm{k}<\mathrm{j}$, with $\mathrm{i}_{\mathrm{k}}=\mathrm{i}_{\mathrm{j}}$ and $\mathrm{d}_{\mathrm{k}}=\mathrm{d}_{\mathrm{j}}$
- This is a contradiction:
- if $a_{k}<a_{j}$ then $i_{k}>i_{j}$ (simply start at a_{k} continue with the longest increasing sequence starting at a_{1})
- if $a_{k}>a_{1}$ then $d_{k}>d_{j}$ (simply start at a_{k} continue with the longest decreasing sequence starting at a_{1})

Permutations vs. Combinations

- How many ways are there of selecting $1^{\text {st }}$, $2^{\text {nd }}$, and $3^{\text {rd }}$ place from a group of 10 sprinters?
- How many ways are there of selecting the top three finishers from a group of 10 sprinters?

r-Permutations

- An r-permutation is an ordered selection of r elements from a set
- $P(n, r)$, number of r-permutations of an n element set

$$
P(n, r)=n(n-1)(n-2) \cdots(n-r+1)=\frac{n!}{(n-r)!}
$$

r-Combinations

- An r-combination is an unordered selection of r elements from a set (or just a subset of size r)
- $C(r, n)$, number of r-combinations of an n element set

$$
C(n, r)=\binom{n}{r}=\frac{n!}{(n-r)!r!}
$$

How many

- Binary strings of length 10 with 3 0's
- Binary strings of length 10 with 7 1's
- How many different ways of assigning 38 students to the first row in the class (the first row can seat 5 students)
- How many different ways of assigning 38 students to a table that seats 5 students

Prove C(n, r) = C(n, n-r) [Proof 1]

- Proof by formula

$$
\begin{gathered}
\binom{n}{r}=\frac{n!}{r!(n-r)!} \\
\binom{n}{n-r}=\frac{n!}{(n-r)!(n-(n-r))!}=\frac{n!}{(n-r)!r!}
\end{gathered}
$$

Prove C(n, r) = C(n, n-r) [Proof 2]

- Combinatorial proof

Counting paths

- How many paths are there of length n $+m-2$ from the upper left corner to the lower right corner of an $n \times m$ grid?

Binomial Theorem

$$
\begin{aligned}
(x+y)^{n} & =\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j} \\
& =\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n}
\end{aligned}
$$

Binomial Coefficient Identities from the Binomial Theorem

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}=(x+y)^{n} \\
\sum_{k=0}^{n}\binom{n}{k}=2^{n} \\
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0 \\
\sum_{\substack{k=0 \\
\text { cse } 2921 \\
n}}^{n} 2^{k}\binom{n}{k}=3^{n}
\end{gathered}
$$

Pascal's Identity and Triangle

$$
\left.\begin{array}{c}
\binom{n+1}{k}=\binom{n}{k}+1
\end{array}\right)+\binom{n}{k} .
$$

Same thing, nicer:
$\mathrm{C}(\mathrm{n}, \mathrm{k})=\mathrm{C}(\mathrm{n}-1, \mathrm{k}-1)+\mathrm{C}(\mathrm{n}-1, \mathrm{k})$

Recap

- Permutations

$$
P(n, r)=n(n-1)(n-2) \cdots(n-r+1)=\frac{n!}{(n-r)!}
$$

- Combinations

$$
C(n, r)=\binom{n}{r}=\frac{n!}{(n-r)!r!}
$$

How many

- Let s_{1} be a string of length n over Σ_{1}
- Let s_{2} be a string of length m over Σ_{2}
- Assuming Σ_{1} and Σ_{2} are distinct, how many interleavings are there of s_{1} and s_{2} ?

