CSE 321 Discrete Structures

February $22^{\text {nd }}, 2010$
Lecture 19: Probability Theory

Discrete Probability

Experiment: Procedure that yields an outcome

Sample space: Set of all possible outcomes

Event: subset of the sample space

S a sample space of equally likely outcomes,
E an event, the probability of $E, p(E)=|E| /|S|$

Example: Dice

Events:
Roll a 6-6
Roll two odd numbers

What are their probabilities?

Example: Poker

Probability of 4 of a kind

Combinations of Events

E^{C} is the complement of E

$$
\mathrm{P}\left(\mathrm{E}^{\mathrm{C}}\right)=1-\mathrm{P}(\mathrm{E})
$$

$$
\mathrm{P}\left(\mathrm{E}_{1} \cup \mathrm{E}_{2}\right)=\mathrm{P}\left(\mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right)-\mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)
$$

Probability Concepts

- Probability Distribution
- Conditional Probability
- Independence
- Bernoulli Trials / Binomial Distribution
- Random Variable

Discrete Probability Theory

- Set S
- Probability distribution $p: S \rightarrow[0,1]$
- For $s \in S, 0 \leq p(s) \leq 1$
$-\Sigma_{s \in s} p(s)=1$
- Event $E, E \subseteq S$
- $p(E)=\Sigma_{s \in E} p(s)$

Conditional Probability

Let E and F be events with $\mathrm{p}(\mathrm{F})>0$. The conditional probability of E given F, defined by $p(E \mid F)$, is defined as:

$$
p(E \mid F)=\frac{p(E \cap F)}{p(F)}
$$

Independence

The events E and F are independent if and only if $p(E \cap F)=p(E) p(F)$

E and F are independent if and only if $p(E \mid F)=p(E)$

Are these independent?

- Flip a coin three times
- E : the first coin is a head
- F : the second coin is a head
- Roll two dice
- E : the sum of the two dice is 5
- F : the first die is a 1
- Roll two dice
- E : the sum of the two dice is 7
- F : the first die is a 1
- Deal two five card poker hands
- E: hand one has four of a kind
- F: hand two has four of a kind

