CSE 321 Discrete Structures

March $1^{\text {st }}, 2010$
Lecture 21: Probability Theory

Annoucement

Makeup class:

- Wednesday, 3/3, 4:30pm in CSE 403

Homework posted, due Friday

In Class

- Monty Hall three door puzzle (Rosen 6.1)
- The birthday paradox (Rosen 6.2)

Expectation

The expected value of random variable $\mathrm{X}(\mathrm{s})$ on sample space S is:

$$
E(X)=\sum_{x \in S} p(s) X(s)
$$

Examples (in class):

- Expected value when rolling a die
- Expected sum when rolling two dice
- Expected number of successes in n independent Bernoulli trials
- Expected value of random variable with geometric distribution

Linearity of Expectation

$$
\mathrm{E}(\mathrm{X}+\mathrm{Y})=\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y})
$$

Application:
Expected number of successes in n independent Bernoulli trials

Product of Independent Random Variables

If X, Y are independent then: $\mathrm{E}(\mathrm{X} * \mathrm{Y})=\mathrm{E}(\mathrm{X}) * \mathrm{E}(\mathrm{Y})$

