CSE 321 Discrete Structures

March 1st, 2010

Lecture 21: Probability Theory

Annoucement

Makeup class:

Wednesday, 3/3, 4:30pm in CSE 403

Homework posted, due Friday

In Class

Monty Hall three door puzzle (Rosen 6.1)

The birthday paradox (Rosen 6.2)

Expectation

The expected value of random variable X(s) on sample space S is:

$$E(X) = \sum_{x \in S} p(s)X(s)$$

Examples (in class):

- Expected value when rolling a die
- Expected sum when rolling two dice
- Expected number of successes in n independent Bernoulli trials
- Expected value of random variable with geometric distribution

Linearity of Expectation

$$E(X + Y) = E(X) + E(Y)$$

Application:

Expected number of successes in n independent Bernoulli trials

Product of Independent Random Variables

If X, Y are independent then: E(X * Y) = E(X) * E(Y)