CSE 321 Discrete Structures

March 3 ${ }^{\text {rd }}, 2010$
Lecture 22: Applications of Probabilities

Expectation

The expected value of random variable $\mathrm{X}(\mathrm{s})$ on sample space S is:

$$
\begin{aligned}
& E(X)=\sum_{s \in S} p(s) X(s) \\
& E(X)=\sum_{r \in X(S)} p(X=r) r
\end{aligned}
$$

Flip a coin until the first head Expected number of flips?

Random variable:

Computing the expectation:

Linearity of Expectation

$$
\mathrm{E}\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)=\mathrm{E}\left(\mathrm{X}_{1}\right)+\mathrm{E}\left(\mathrm{X}_{2}\right)
$$

$\mathrm{E}(\mathrm{aX})=\mathrm{aE}(\mathrm{X})$

Hashing

$\mathrm{H}: \mathrm{M} \rightarrow[0 . . \mathrm{n}-1]$

If k elements have been hashed to random locations, what is the expected number of elements in bucket j ?

What is the expected number of collisions when hashing k elements to random locations?

Hashing analysis

Sample space: $[0 . . n-1] \times[0 . . n-1] \times \ldots \times[0 . . n-1]$

Random Variables
$X_{j}=$ number of elements hashed to bucket j
$\mathrm{C}=$ total number of collisions
$B_{i j}=1$ if element i hashed to bucket j
$B_{i j}=0$ if element i is not hashed to bucket j
$C_{a b}=1$ if element a is hashed to the same bucket as element b $C_{a b}=0$ if element a is hashed to a different bucket than element b

Counting inversions

Let $p_{1}, p_{2}, \ldots, p_{n}$ be a permutation of $1 \ldots n$ p_{i}, p_{j} is an inversion if $i<j$ and $p_{i}>p_{j}$

4, 2, 5, 1, 3
$1,6,4,3,2,5$
$7,6,5,4,3,2,1$

Expected number of inversions for a random permutation

For each $\mathrm{i}<\mathrm{j}$ let X_{ij} be the following random variable:
$X_{i j}=1$ if $p_{i}>p_{j}$, and $X_{i j}=0$ if $p_{i}<p_{j}$
Fact 1: $\mathrm{P}\left(\mathrm{X}_{\mathrm{ij}}=1\right)=1 / 2 \quad$ (why ??); hence $\mathrm{E}\left(\mathrm{X}_{\mathrm{ij}}\right)=1 / 2$

Let $\mathrm{X}=$ the number of permutations: $\mathrm{X}=\Sigma_{\mathrm{ij}} \mathrm{X}_{\mathrm{ij}}$

Fact 2: $\mathrm{E}(\mathrm{X})=\Sigma_{\mathrm{ij}} \mathrm{E}\left(\mathrm{X}_{\mathrm{ij}}\right)$; hence $\mathrm{E}(\mathrm{X})=\mathrm{n}(\mathrm{n}-1) / 4$

Insertion sort

4	2	5	1	3

```
for i :=1 to n-1 {
    j := i;
    while (j>0 and A[j-1]>A[j]){
        swap(A[j-1],A[j]);
        j:= j - 1;
    }
}
```


What is the expected number of swaps?

Expected number of swaps for Insertion Sort

For each $\mathrm{i}=1, \ldots, \mathrm{n}-1$, let X_{i} be the following random variable:
$X_{i}=$ number of swaps at iteration i
Fact 1: Forall $\mathrm{j}=0, \ldots, \mathrm{i}, \mathrm{P}\left(\mathrm{X}_{\mathrm{i}}=\mathrm{j}\right)=1 /(\mathrm{i}+1) \quad$ (why ??)

Fact 2: $\mathrm{E}\left(\mathrm{X}_{\mathrm{i}}\right)=(1+2+\ldots+\mathrm{i}) /(\mathrm{i}+1)=\mathrm{i} / 2$
Let X be the total number of swaps
Fact 3: $\mathrm{E}(\mathrm{X})=\Sigma_{\mathrm{i}} \mathrm{E}\left(\mathrm{X}_{\mathrm{i}}\right)=\mathrm{n}(\mathrm{n}+1) / 4$

Left to right maxima

```
max_so_far := A[0];
k=0;
for i:= 1 to n-1
    if(A[ i ] > max_so_far)
    { max_so_far:= A[ i ];
        k++;
    return k;
5,2,9,14,11,18,7,16,1,20,3,19,10,15,4,6,17,12, 8
```

What is the expected value of k ?

What is the expected number of left-to-right maxima in a random permutation

