CSE 321 Winter 2010 Homework #3

Due Friday, January 30th at the start of lecture. Bring to class to turn in.

- 1. (10 Points) Section 4.1, problem 6. Give two solutions:
 - Using induction.
 - Using telescoping.
- 2. (10 Points) Section 4.1, problem 14. Use induction.
- 3. (10 Points) Section 4.1, problem 16. Use telescoping.
- 4. (10 Points) Section 4.1, problem 30. Use induction.
- 5. (10 Points) Section 4.3, problem 4.
- 6. (10 Points) Section 4.3, problem 8. Your recursive definitions should not use n, other than as an index in a_n or a_{n-1} (or a_{n-2}, \ldots). For example, for the sequence $a_n = n(n+1)$, the recursive definition $a_n = a_{n-1} + 2n$ is not acceptable because of the expression 2n: you need to find an expression like $a_n = a_{n-1} \cdot a_{n-5}^2 + 3$ (not the real answer).
- 7. (10 Points) Section 4.3, problem 12. Use induction.
- 8. (10 Points) Section 4.3, problem 38.
- 9. (10 Points) Section 4.3, problem 40.
- 10. (10 Points) Section 4.3, problem 44.

Extra credit (10 points) The game of Nim is played as follows. There are n matches, placed in k rows. Two players take turn, and each player may take one ore more matches from a single row. The player who takes the last match wins. (See lecture notes for a discussion of the game of Nim for two rows only.)

Let a_i be the number of matches in row i: thus, $n = \sum_{i=1,k} a_i$. Express a_i in binary, and compute the exclusive-or of all values a_i :

$$S = a_1 \oplus a_2 \oplus \ldots \oplus a_k$$

Prove by strong induction on n the following statement: if S=0 then the second player has a winning strategy, and if $S \neq 0$, then the first player has a winning strategy.

Example 1. Consider the Nim game with two rows, each with 14 matches: $a_1 = a_2 = 14 = 1110_2$, and $S = 1110 \oplus 1110 = 0000$. Player 2 has a winning strategy: we discussed this in class.

Example 2. Consider the Nim game with three rows, with 1, 3, 5. matches:

$$a_1 = 1_2$$

 $a_2 = 11_2$
 $a_3 = 101_2$
 $S = a_1 \oplus a_2 \oplus a_3 = 001 \oplus 011 \oplus 101 = 111$

Player 1 has a winning strategy.