Problem Set 5
Due Friday, May 12, 2006, in class
Reading Assignment: Finish reading Sec 2.1 of Sipser and handouts on Chomsky Normal form and CKY algorithm.

Instructions: The basic instructions are the same as in Problem Set 1.
There are SEVEN questions in this assignment. This is probably a long problem set, so start early.

Do not forget to mention the names of your collaborators in your homework.

1. $\left(^{*}\right)(10$ points) Consider the DFA $M=\langle\{a, b, c, d, e, f, g, h, i\},\{0,1\}, \delta, a,\{c, f, i\}\rangle$, where the transition function δ is given by the following table:

	0	1
a	b	e
b	c	f
c	d	h
d	e	h
e	f	i
f	g	b
g	h	b
h	i	c
i	a	e

Using the method covered in class find the minimum-state DFA that is equivalent to M. Show your steps.
2. $\left(^{*}\right)(3 \times 5=15$ points) Show that context-free languages are closed under the union, concatenation and star operators. (You do not need to prove that your construction works but informally argue why your construction works.)
3. $(4 \times 10=40$ points $)$ Give context free grammars for the following languages and brief explain why your grammar works.
(a) The complement of the language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ (the alphabet is $\{a, b\}$).
(b) $\left\{x_{1} \# x_{2} \# \cdots \# x_{k} \mid k \geq 1\right.$, each $x_{i} \in\{a, b\}^{*}$, and for some i and $\left.j, x_{i}=x_{j}^{R}\right\}$. (The alphabet is $\{a, b, \#\}$.)
(Hint: It might be easier to first think about the following language $\left\{w \# x \mid w^{R}\right.$ is a substring of x for $\left.x, w \in\{a, b\}^{*}\right\}$.)
(c) $\left(^{*}\right)$ The set of strings over $\{0,1\}$ with thrice as many 1 's as 0 's.
(d) $\left(^{*}\right)\{R \mid R$ is a regular expression over $\{0,1\}\}$.
4. $(2 \times 10=20$ points) In this problem we will consider the Chomsky Normal form of context free grammars.
(a) Let G be an arbitrary grammar in Chomsky Normal form. Prove that any string $w \in$ $L(G)$ of length $n \geq 1$ has exactly $2 n-1$ steps in its derivation.
(b) $\left(^{*}\right)$ Convert the following grammar into Chomsky Normal form. Show all your steps.

$$
\begin{aligned}
S & \rightarrow a A a|b B b| \epsilon \\
A & \rightarrow C \mid a \\
B & \rightarrow C \mid b \\
C & \rightarrow C E|B C D| \epsilon \\
D & \rightarrow A|B| a b
\end{aligned}
$$

5. $(5+10=15$ points $)$ Consider the following grammar $P R O G-F R A G=(V, \Sigma, R,\langle S T\rangle)$ for a fragment of a programming language:

$$
\begin{aligned}
& V=\{\langle S T\rangle,\langle A S S I G N\rangle,\langle I F-T H E N\rangle,\langle I F-T H E N-E L S E\rangle\} \\
& \Sigma=\{\text { if, condition, then, else, a }=1 ;\},
\end{aligned}
$$

and $P R O G-F R A G$ has the following rules:

$$
\begin{aligned}
\langle S T\rangle & \rightarrow\langle A S S I G N\rangle|\langle I F-T H E N\rangle|\langle I F-T H E N-E L S E\rangle \\
\langle I F-T H E N\rangle & \rightarrow \text { if condition then }\langle S T\rangle \\
\langle I F-T H E N-E L S E & \rightarrow \text { if condition then }\langle S T\rangle \text { else }\langle S T\rangle \\
\langle A S S I G N\rangle & \rightarrow \mathrm{a}=1 ;
\end{aligned}
$$

(a) $\left(^{*}\right)$ Show that $P R O G-F R A G$ is ambiguous.
(b) Give a new unambiguous grammar that generates the same language as $P R O G-F R A G$. You do not have to prove unambiguity, but informally describe why your new grammar is not ambiguous.
6. (Bonus) (5 points) Sipser's text, page 130, Problem 2.19 (Pg. 122, Problem 2.25 in first edition). Justify your description of $L(G)$.
7. (Bonus) (10 points) A CFG $G=(V, \Sigma, R, S)$ is right-linear if and only if every rule in R is of the form $A \rightarrow w B$ or $A \rightarrow w$ for $w \in \Sigma^{*}$ and $A, B \in V$.
Similarly, G is left-linear if and only if every rule in R is of the form $A \rightarrow B x$ or $A \rightarrow x$ for $x \in \Sigma^{*}$ and $A, B \in V$.
Prove that if G is either right-linear or left-linear, then $L(G)$ is regular.

