PROBLEM SET 5 Due Friday, May 12, 2006, in class

Reading Assignment: Finish reading Sec 2.1 of Sipser and handouts on Chomsky Normal form and CKY algorithm.

Instructions: The basic instructions are the same as in Problem Set 1.

There are **SEVEN** questions in this assignment. This is probably a long problem set, so start early.

Do not forget to mention the names of your collaborators in your homework.

1. (*) (10 points) Consider the DFA $M = \langle \{a, b, c, d, e, f, g, h, i\}, \{0, 1\}, \delta, a, \{c, f, i\} \rangle$, where the transition function δ is given by the following table:

	0	1
a	b	e
b	c	f
c	d	h
d	e	h
e	f	i
f	g	b
g	h	b
h	i	c
i	a	e

Using the method covered in class find the minimum-state DFA that is equivalent to M. Show your steps.

- 2. (*) $(3 \times 5 = 15 \text{ points})$ Show that context-free languages are closed under the union, concatenation and star operators. (You do not need to *prove* that your construction works but informally argue why your construction works.)
- 3. $(4 \times 10 = 40 \text{ points})$ Give context free grammars for the following languages and brief explain why your grammar works.
 - (a) The complement of the language $\{a^n b^n \mid n \ge 0\}$ (the alphabet is $\{a, b\}$).
 - (b) $\{x_1 \# x_2 \# \cdots \# x_k \mid k \ge 1, \text{ each } x_i \in \{a, b\}^*, \text{ and for some } i \text{ and } j, x_i = x_j^R\}$. (The alphabet is $\{a, b, \#\}$.) (Hint: It might be easier to first think about the following language $\{w \# x \mid w^R \text{ is a substring of } x \text{ for } x, w \in \{a, b\}^*\}$.)
 - (c) (*) The set of strings over $\{0, 1\}$ with thrice as many 1's as 0's.
 - (d) (*) $\{R \mid R \text{ is a regular expression over } \{0,1\}\}.$

- 4. $(2 \times 10 = 20 \text{ points})$ In this problem we will consider the Chomsky Normal form of context free grammars.
 - (a) Let G be an arbitrary grammar in Chomsky Normal form. Prove that any string $w \in L(G)$ of length $n \ge 1$ has exactly 2n 1 steps in its derivation.
 - (b) (*) Convert the following grammar into Chomsky Normal form. Show all your steps.

$$\begin{array}{rcl} S & \rightarrow & aAa \mid bBb \mid \epsilon \\ A & \rightarrow & C \mid a \\ B & \rightarrow & C \mid b \\ C & \rightarrow & CE \mid BCD \mid \epsilon \\ D & \rightarrow & A \mid B \mid ab \end{array}$$

5. (5 + 10 = 15 points) Consider the following grammar $PROG - FRAG = (V, \Sigma, R, \langle ST \rangle)$ for a fragment of a programming language:

$$V = \{\langle ST \rangle, \langle ASSIGN \rangle, \langle IF - THEN \rangle, \langle IF - THEN - ELSE \rangle \}$$

$$\Sigma = \{ \text{if, condition, then, else, a = 1;} \},$$

and PROG - FRAG has the following rules:

$$\begin{array}{rcl} \langle ST\rangle & \rightarrow & \langle ASSIGN\rangle \mid \langle IF - THEN\rangle \mid \langle IF - THEN - ELSE\rangle \\ \langle IF - THEN\rangle & \rightarrow & \text{if condition then } \langle ST\rangle \\ \langle IF - THEN - ELSE & \rightarrow & \text{if condition then } \langle ST\rangle \text{ else } \langle ST\rangle \\ & \langle ASSIGN\rangle & \rightarrow & \texttt{a}=\texttt{1}; \end{array}$$

- (a) (*) Show that PROG FRAG is ambiguous.
- (b) Give a new unambiguous grammar that generates the same language as PROG-FRAG. You do not have to *prove* unambiguity, but informally describe why your new grammar is not ambiguous.
- 6. (Bonus) (5 points) Sipser's text, page 130, Problem 2.19 (Pg. 122, Problem 2.25 in first edition). Justify your description of L(G).
- 7. (Bonus) (10 points) A CFG $G = (V, \Sigma, R, S)$ is right-linear if and only if every rule in R is of the form $A \to wB$ or $A \to w$ for $w \in \Sigma^*$ and $A, B \in V$.

Similarly, G is *left-linear* if and only if every rule in R is of the form $A \to Bx$ or $A \to x$ for $x \in \Sigma^*$ and $A, B \in V$.

Prove that if G is either right-linear or left-linear, then L(G) is regular.