

Puzzle of the day

- Design a context free grammar for the following language:
- $\left\{x y \mid x, y \in\{0,1\}^{*}\right.$ and $|x|=|y|$ but $\left.x \neq y\right\}$
\qquad
A. Rudra, CSE322 ${ }^{3}$

Running Example

- $\mathrm{P} \rightarrow \mathrm{PQP}|\mathrm{Q}| \varepsilon$
$-\mathrm{Q} \rightarrow 00 \mid \varepsilon$

Step 1: S on RHS

- Fix : Add a new start variable S' and - Add rule $S^{\prime} \rightarrow$ S
- $S^{\prime} \rightarrow P$
- $P \rightarrow P Q P|Q| \varepsilon$
$-\mathrm{Q} \rightarrow 00 \mid \varepsilon$

Step 2: Non-single terminal on RHS

- Problem: Rule of the form $\mathrm{A} \rightarrow \mathrm{XaY}$
- Fix: Remove old rule and
- Add a new variable Z and the rules
- $Z \rightarrow a, \quad A \rightarrow X Z Y$
- $S^{\prime} \rightarrow P$
- $P \rightarrow P Q P|Q| \varepsilon$
- $\mathrm{Q} \rightarrow 00 \mid \varepsilon$
- $\mathrm{Z} \rightarrow 0$
A. Rudra, CSE322

Step 2: Non-single terminal on RHS

- Problem: Rule of the form $A \rightarrow X a Y$
- Fix: Remove old rule and
- Add a new variable Z and the rules
- $Z \rightarrow a, \quad A \rightarrow X Z Y$
- $S^{\prime} \rightarrow P$
- $\mathrm{P} \rightarrow \mathrm{PQP}|\mathrm{Q}| \varepsilon$
$-\mathrm{Q} \rightarrow \mathrm{ZZ} \mid \varepsilon$
- $\mathrm{Z} \rightarrow 0$
A. Rudra, CSE322

Step 3: Multiple vars. On RHS

- Problem: $A \rightarrow B_{1} B_{2} \ldots B_{k}, k>2$
- Fix: Remove the old rule and
- Add new vars $T_{2}, \ldots T_{k-1}$ and the rules
- $A \rightarrow B_{1} T_{2}, T_{2} \rightarrow B_{2} T_{3}, \ldots T_{k-1} \rightarrow B_{k-1} B_{k}$
- $S^{\prime} \rightarrow P$
- $P \rightarrow P T_{2}|Q| \varepsilon$
- $\mathrm{Q} \rightarrow \mathrm{ZZ} \mid \varepsilon$
- $Z \rightarrow 0$
- $T_{2} \rightarrow Q P$
A. Rudra, CSE322

Step 4: A $\rightarrow \varepsilon$

- Fix: Remove all such rules
- Patchwork is slightly more involved
- $S^{\prime} \rightarrow P$
- $P \rightarrow P T_{2}|Q| \varepsilon$
- $\mathrm{Q} \rightarrow \mathrm{ZZ} \mid \varepsilon$
- $\mathrm{Z} \rightarrow 0$
- $\mathrm{T}_{2} \rightarrow \mathrm{QP}$

What are we losing ?

- Maybe $S^{\prime}{ }^{*}{ }^{*} \varepsilon$
- If $A \rightarrow B C$ and $B \rightarrow \varepsilon$
- Earlier: $A \Rightarrow{ }^{\circ} \mathrm{C}$
- Now: no longer possible
- The fix: compute \mathcal{E}
- Set of variables that can derive ε
- If $A \rightarrow \varepsilon$, then put A in \mathcal{E}
- If $B \rightarrow w, w \in \mathcal{E}$, then put B in \mathcal{E}
A. Rudra, CEE322
${ }^{13}$

Applying the fix to our example

- $\mathcal{E}=\left\{P, Q, S^{\prime}, T_{2}\right\}$
- $S^{\prime} \rightarrow P$
- $\mathrm{P} \rightarrow \mathrm{PT}_{2}|\mathrm{Q}| \varepsilon$
$-\mathrm{Q} \rightarrow \mathrm{ZZ} \mid \varepsilon$
- $\mathrm{Z} \rightarrow 0$
- $\mathrm{T}_{2} \rightarrow$ QP
\square
A. Rudra, CSE322 ${ }^{15}$

After computing \mathcal{E}

- If $S^{\prime} \in \mathcal{E}$, then add rule - $S^{\prime} \rightarrow \varepsilon$
- For rule $A \rightarrow B C$ such that $C \in \mathcal{E}$ - Add rule $A \rightarrow B$
- For rule $A \rightarrow B C$ such that $B \in \mathcal{E}$ - Add rule $A \rightarrow C$

	14

Removing the $\mathrm{A} \rightarrow \varepsilon$ rules

- $\mathcal{E}=\left\{P, Q, S^{\prime}, T_{2}\right\}$
- $S^{\prime} \rightarrow P$
- $P \rightarrow P T_{2} \mid Q$
- $\mathrm{Q} \rightarrow \mathrm{ZZ}$
- $\mathrm{Z} \rightarrow 0$
- $\mathrm{T}_{2} \rightarrow \mathrm{QP}$
A. Rudra, CSE322

```
Step 5: A }->\mathrm{ B
- Fix: Remove the unit rules
| What do we lose ?
    Say A->B and B->X (X is not a single variable)
    _ Earlier: A = * X
    ~ Now: not possible
- Patchwork
    - If we knew that A can reach B using unit rules
        Add a new rule A }->\textrm{X
A. Rudr, CSE32
```


Back to the example

- $S^{\prime} \rightarrow \varepsilon$
- $S^{\prime} \rightarrow P$
- $P \rightarrow P T_{2}|Q| P \mid T_{2}$
- $\mathrm{Q} \rightarrow \mathrm{ZZ}$
- $\mathrm{Z} \rightarrow 0$

- $T_{2} \rightarrow Q P|Q| P$
- $\mathcal{D}(\mathrm{P})=\left\{\mathrm{Q}, \mathrm{T}_{2}\right\}$
- $\mathcal{D}\left(T_{2}\right\}=\{Q, P\}, \mathcal{D}\left(S^{\prime}\right)=\left\{P, Q, T_{2}\right\}, \mathcal{D}(Q)=\mathcal{D}(Z)=\emptyset$
A. Rudra, CSE32

```
Completing the patchwork
- S' \(\rightarrow \varepsilon\)
\(-S^{\prime} \rightarrow \mathrm{PT}_{2}|\mathrm{ZZ}| \mathrm{QP}\)
\(-P \rightarrow P_{2}|Q P| Z Z\)
\(-\mathrm{Q} \rightarrow \mathrm{ZZ}\)
- \(\mathrm{Z} \rightarrow 0\)
- \(\mathrm{T}_{2} \rightarrow \mathrm{QP}\left|\mathrm{PT}_{2}\right| \mathrm{ZZ}\)
- \(\mathcal{D}(P)=\left\{Q, T_{2}\right\}\)
- \(\mathcal{D}\left(T_{2}\right\}=\{Q, P\}, \mathcal{D}\left(S^{\prime}\right)=\left\{P, Q, T_{2}\right\}, \mathcal{D}(Q)=\mathcal{D}(Z)=\emptyset\)
A. Rudra, CSE322

Computing the reachability
- Build a directed graph
- Each node is a variable
- If \(A \rightarrow B\) then edge from \(A\) to \(B\)
- Denote \(\mathcal{D}(A)\)
- Set of vars reachable from \(A\) in the above graph
- If \(B \rightarrow X\) and \(B \in \mathcal{D}(A)\) then add
\(\square X\) is interesting
- \(A \rightarrow X\)
A. Rudn, CSE322

\section*{Removing unit rules}
- \(S^{\prime} \rightarrow \varepsilon\)
- S' \(\rightarrow\)
- \(\mathrm{P} \rightarrow \mathrm{PT}_{2} \mid\)
- \(\mathrm{Q} \rightarrow \mathrm{ZZ}\)
- \(\mathrm{Z} \rightarrow 0\)
- \(\mathrm{T}_{2} \rightarrow \mathrm{QP} \mid\)
- \(\mathcal{D}(P)=\left\{Q, T_{2}\right\}\)
- \(\mathcal{D}\left(T_{2}\right\}=\{Q, P\}, \mathcal{D}\left(S^{\prime}\right)=\left\{P, Q, T_{2}\right\}, \mathcal{D}(Q)=\mathcal{D}(Z)=\emptyset\)
A. Rudra, CSE322
\begin{tabular}{|l|}
\hline Questions ? \\
\\
\\
\\
\\
\hline \\
\hline
\end{tabular}


\section*{All is fine...}
- Went from DFAs to new machines
- In the Simpson language

Have finite memory
- The fix: allow machines to have infinite memory
- Machine for the above language:
- Write all Os to the tape
- Once you start seeing 1 s
- For each 1 mark off a 0
- At the end, check if all Os are marked off
A. Rudra, CSE322

\begin{tabular}{|l|}
\hline What the heck is he talking about? \\
\(=\substack{\text { Enter Push Down Automatons } \\
\circ \text { pOAAs }}\) \\
\\
\hline
\end{tabular}```

