
$-\left\{w \# w^{R} \mid w \in\{0,1\}^{*}\right\}$
\longrightarrow
A. Rudra, CSE322 5

```
Announcements
- Turn in your H/W #5
- Pick up a copy of H/W #6
A. Rudn, CSE322
```


Announcements

```
- Turn in your H/W \#5
- Pick up a copy of H/W \#6
A. Rudra, CSE322
```

Puzzle for the day

- Design a PDA for the following language
- $\left\{x y \mid x, y \in\{0,1\}^{*}\right.$ and $|x|=|y|$ but $\left.x \neq y\right\}$

1. Rudra, CSE322

Let's look at a string in the language

- 1101 \# 1011
- How does 1101 look when it is pushed onto a stack?
- It looks the same as the stuff after the \#
- Just "match" off the rest

A. Rudra, CSE322

Questions ?

Formal definition of a PDA

- PDA M = $\langle\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{s}, \mathrm{F}\rangle$
- Q : set of states
- Σ : input alphabet
- Γ : stack alphabet
- Symbols that can be pushed and popped
- $\delta: Q \times \Sigma U\{\varepsilon\} \times \Gamma \cup\{\varepsilon\} \rightarrow 2^{Q \times \Gamma \cup\{\varepsilon\}}$
- Transition function
- $s \in Q$: start state
- $F \subseteq Q$: final states
A. Rudra, CSE322

Using the previous example

- $Q=\{A, B, C, D\}$
- $\Sigma=\{0,1, \#\}$
- $\Gamma=\{0,1, \$, \#\}$
- $\mathrm{s}=\mathrm{A}$

- $F=\{D\}$
- The transition from C to D
- $(\mathrm{D}, \varepsilon) \in \delta(\mathrm{C}, \varepsilon, \$)$
\longrightarrow
A. Rudr, CSE322

