

Announcements

- Turn in your H/W \#6
- Take a copy of H/W \#7
- If you did not last class

[^0]- Sorry, no graded H/W \#5's today
- Will be handed out in class on Monday
- Take a copy of solutions to H/W \#5

Puzzle for today

- Prove that the following language is not a CFL

```
\square{ an | n is a prime }
```

A. Rudra, CSE322

```
Statement of the pumping lemma
- If L is a CFL then
    - \exists integer p \geq 1
    - }\forall\mathrm{ strings s }\inL\mathrm{ with }|s|
    - \exists strings u,v,x,y,z satisfying s=uvxyz with
    - |vxy|\leqp
    - |v|>0 or |y > >0
    - }\forall\mathrm{ integer i}\geq0,u\mp@subsup{v}{}{i}x\mp@subsup{y}{}{i}z\in
- \(\forall\) integer \(i \geq 0, u v^{i} x y^{i} z \in L\)
```

A. Rudra, CSE32
The "proof"

- L is CFL
- L is accepted by a grammar G
- Consider any string "long enough" s in L - The parse tree must have a repeated variable
- Repeating the derivation between the repeats will give new strings that are also in L
A. Rudr, CSE322

[^1]Contrapositive of the pumping lemma

- If L is a CFL then
- If
- \exists integer $\mathrm{p} \geq 1$
- \forall strings $s \in L$ with $|s| \geq$ p
- \exists strings u, v, x, y, z satisfying $s=u v x y z$ with
- $|v x y| \leq p$
- $|\mathrm{v}|$ or $|\mathrm{y}|>0$
- \forall integer $i \geq 0, u v^{i} x y^{i} z$ in

L
\forall integer $\mathrm{p} \geq 1$

- \exists string $s \in L$ with $|s| \geq p$
- \forall strings u, v, x, y, z satisfying $s=u v x y z$ with
- $|v x y| \leq p$
- $|\mathrm{v}|>0$ or $|\mathrm{y}|>0$
- ヨinteger $i \geq 0, u v^{i} x y^{i} z$ not in L
- then L is not CFL
A. Rudra, CSE32

Using the pumping lemma

What have we done till now ?

- Worked with the Simpson parents

Regular languages

Context-Free languages
A. Rudra, CSE322
${ }^{9}$
A. Rudra, CSE322 10


```
A quick question
■ Which model represents a PC ?
- Depends on how "faithful" representation you
    want
- No PC has infinite memory
| But for "practical" purposes it is "infinite"
A. Rudra, CSE322
```


[^0]: A. Rudra, CSE322

[^1]: A. Rudra, CSE32

