CSE 322

Introduction to Formal Models in Computer Science

Myhill-Nerode Theorem

DEFINITION Let A be any language over Σ^* . We say that strings x and y in Σ^* are indistinguishable by A iff for every string $z \in \Sigma^*$ either both xz and yz are in A or both xz and yz are not in A. We write $x \equiv_A y$ in this case.

Note that \equiv_A is an equivalence relation. (Check this yourself.)

DEFINITION Given a DFA $M=(Q,\Sigma,\delta,s,F)$ we say that two strings x and y in Σ^* are indistinguishable by M iff $\delta^*(s,x)=\delta^*(s,y)$, i.e. the state reached by M on input x is the same as the state reached by M on input y. We write $x\equiv_M y$ in this case.

Note that \equiv_M is an equivalence relation and that it only has a finite number of equivalence classes, one per state. In fact, the equivalence classes of \equiv_M are precisely the sets of inputs that you would have used to document the states of M.

Lemma 1 If A = L(M) for a DFA M then for any $x, y \in \Sigma^*$ if $x \equiv_M y$ then $x \equiv_A y$.

Proof Suppose that A = L(M). Therefore $w \in A \Leftrightarrow \delta^*(s, w) \in F$. Suppose also that $x \equiv_M y$. Then $\delta^*(s, x) = \delta^*(s, y)$.

Let $z \in \Sigma^*.$ Clearly $\delta^*(s,xz) = \delta^*(s,yz).$ Therefore

$$xz \in A \Leftrightarrow \delta^*(s, xz) \in F$$

 $\Leftrightarrow \delta^*(s, yz) \in F$
 $\Leftrightarrow yz \in A$

It follows that $x \equiv_A y$.

This lemma says that whenever two elements arrive at the same state of M they are in the same equivalence class of \equiv_A . This means that each equivalence class of \equiv_A is a union of equivalence classes of \equiv_M .

Corollary 2 If A is regular then \equiv_A has a finite number of equivalence classes.

Proof Let M be a DFA such that A = L(M). The Lemma shows that \equiv_A has at most as many equivalence classes as \equiv_M , which has a finite number of equivalence classes (equal to the number of states of M).

We now get another way of proving that languages are not regular, namely given A find an infinite sequence of strings x_1, x_2, \ldots and prove that they are not equivalent to each other with respect to \equiv_A .

Claim 3 $A = \{0^n 1^n : n \ge 0\}$ is not regular.

Proof Consider the infinite sequence of strings x_1, x_2, \ldots where $x_i = 0^i$ for $i \ge 1$. We now see that no two of these are equivalent to each other with respect to \equiv_A : Consider $x_i = 0^i$ and $x_j = 0^j$ for $i \ne j$. Let $z = 1^i$ and notice that $x_i z = 0^i 1^i \in A$ but $x_j z = 0^j 1^i \notin A$. Therefore no two of these strings are equivalent to each other under \equiv_A , so \equiv_A has an infinite number of equivalence classes. Therefore by the above Corollary, A cannot be regular.

One nice thing about this method for proving things nonregular is that, unlike the pumping lemma, it is always guaranteed to work because the corollary above is a precise characterization of the regular languages. The statement of this fact is known as the Myhill-Nerode Theorem after the two people who first proved it.

Theorem 4 (Myhill-Nerode Theorem) A is regular if and only if \equiv_A has a finite number of equivalences classes. Furthermore there is a DFA M with L(M) = A having precisely one state for each equivalence class of \equiv_A .

Proof The corollary above already gives one direction of this statement. All we now need to show is that if \equiv_A has a finite number of equivalence classes then we can build a DFA $M=(Q,\Sigma,\delta,s,F)$ accepting A where there is one state in Q for each equivalence class of \equiv_A . Here is how it goes:

Let A_1, \ldots, A_r be the equivalence classes of \equiv_A . Remember that the A_i are disjoint and their union is all of Σ^* . Define $Q = \{q_1, \ldots, q_r\}$. Our goal will be to define the machine M so that $\delta^*(s,x) = q_i \Leftrightarrow x \in A_i$.

Let $s \in Q$ be the one q_i such that $\epsilon \in A_i$.

Note that for any A_j and any $a \in \Sigma$, for every $x, y \in A_j$, xa and ya will both be contained in the same equivalence class of \equiv_A . (For any $z \in \Sigma^*$, $xaz \in A \Leftrightarrow yaz \in A$ since x and y are in the same equivalence class of \equiv_A .)

To figure out what $\delta(q_j, a)$ should be, all we do is pick some $x \in A_j$, find the one k such that $xa \in A_k$ and set $\delta(q_j, a) = q_k$. The answer will be the same no matter which x we choose.

To pick the final states, note that for each j, either $A_j \subset A$ or $A_j \cap A = \emptyset$. Therefore we let $F = \{q_j \mid A_j \subseteq A\}$.

It is easy to argue by induction that $\delta^*(s,x)=q_j\Leftrightarrow x\in A_j$. This, together with the choice of F ensures that L(M)=A.

By the proof of the corollary above we know that the number of states of M constructed above is the smallest possible. (In fact, if one looks at things carefully one can see that all DFA's of that size for A have to look the same except for the names of the states.)

However, in general, even though A is a regular language we may not have a nice description of \equiv_A at our disposal in order to build M. What happens if all we have is some DFA accepting A? That's the subject of the next handout, Minimizing DFAs.