Closed Book, Closed Notes Time Limit: 1 hour 50 minutes

- 1. Answer True or False to the following questions and briefly JUSTIFY each answer.
 - (a) If a PDA M actually pushes a symbol on its stack then L(M) is not regular.
 - (b) For every infinite regular language L over Σ there are strings $x, y, z \in \Sigma^*$ such that $|y| \ge 1$ and for every $k \ge 0$, $xy^k z \in L$.
 - (c) There is no algorithm to tell, given an arbitrary string P whether or not P is the ASCII for a syntactically correct C program.
 - (d) If L is a CFL and $L = K \cap R$ for a regular language R then K is a CFL.
 - (e) If L is not a CFL and $L = K \cap R$ for a regular language R then K is not a CFL.
 - (f) There is no algorithm to tell, given an arbitrary program P and an input x, whether or not P runs forever on input x.
 - (g) If the stack in a PDA M only has capacity for 100 characters on any input then L(M) is regular.
 - (h) If L is accepted by some PDA M then L^R is accepted by some PDA M'.
 - (i) There is no algorithm to tell, given an arbitrary CFG G and input x whether or not $x \in L(G)$.
 - (j) Context-free languages are more interesting than regular languages.
- 2. Classify each of the following sets as:
 - A Both Regular and Context-Free,
 - B Context-Free, but not regular,
 - C Neither context-free nor regular but membership in the language can be decided by an algorithm.
 - D Undecidable

You do not need to justify your answers.

(a)	$\{a^n b^m \mid m = 2n+1\}.\dotsA$	В	С	D
(b)	$\{a^n a^m \mid m = 2n+1\}.$	В	С	D
(c)	$\{a^n b^m \mid m \equiv n \pmod{3}\}.\dots\dotsA$	В	С	D
(d)	${xcx^R \in {a, b}^* \mid x \text{ has an even number of a's}}$ A	В	С	D
(e)	$\{a^i b^j c^k \mid k = i + j\}A$	В	С	D
(f)	$\{a^i b^j a^k \mid k \neq i \text{ or } k \neq j\}$ A	В	С	D
(g)	$\{a^i b^j a^k \mid k \neq i \text{ and } k \neq j\}$ A	В	С	D
(h)	$\{a^n b^n a^m b^m \mid m, n \ge 0\}. \dots A$	В	С	D
(i)	$\{a^n b^m a^n b^m \mid m, n \ge 0\}. \dots A$	В	С	D
(j)	$\{xy \in \{a,b\}^* \mid x \neq y\}. \dots A$	В	С	D

- 3. Let $L = \{0^n 1^m \mid m \text{ is an integer multiple of } n\}$. Use the Myhill-Nerode theorem to show that L is not regular.
- 4. Let $G = (V, \Sigma, R, S)$ be the context-free grammar with the following set of rules:

$$S \to aSaSb \mid aSbSa \mid bSaSa \mid SS \mid e$$

- (a) Use one of the general constructions that convert a CFG to a PDA to give a PDA M such that L(M) = L(G).
- (b) Show each step of a computation of your PDA (list the stack contents, state, and amount of input remaining) that accepts input *aabbaaaab*.
- (c) (Bonus) What language does this grammar generate?
- 5. Let $\#_a(x)$ be the number of a's in x and $\#_b(x)$ be the number of b's in x. Let $L = \{x \in \{a, b\}^* \mid \#_a(x) = \#_b(x) \text{ and both are even}\}.$
 - (a) Give the formal definition of a context-free grammar G such that L(G) = L.
 - (b) Give a parse tree for the string: *aabbbaab*
 - (c) Write out the leftmost derivation corresponding to the parse tree in part (b).
- 6. Let $L = \{a^m b^n c^p \mid 0 \le m < n < p\}$. Prove that L is not a context-free language.
- 7. For any context-free grammar $G = (V, \Sigma, R, S)$, we say that a nonterminal $A \in V$ is *useful* if there is a derivation $S \Rightarrow^* xAy \Rightarrow^* w$ for $w \in \Sigma^*$ and $x, y \in (V \cup \Sigma)^*$; otherwise it is *useless*. Suppose that G has the following rules:

$$S \rightarrow AC \mid BS \mid B$$

$$A \rightarrow aA \mid aT$$

$$B \rightarrow CF \mid b$$

$$C \rightarrow cC \mid D$$

$$D \rightarrow aD \mid BD \mid C$$

$$E \rightarrow aA \mid BSA$$

$$T \rightarrow bB \mid b$$

$$U \rightarrow bA \mid a \mid Wb$$

$$W \rightarrow Ub \mid a \mid Bb$$

- (a) Which non-terminals of G are useful?
- (b) Modify G to get an equivalent grammar G' whose nonterminals consist of precisely the nonterminals of G that are useful. (Don't remove any other non-terminals.)
- (c) Describe a reasonably efficient algorithm that will remove all useless non-terminals from a grammar and thus show that any grammar is equivalent to one with only useful non-terminals.