Reading Assignment: 0.1-0.4 (review) and 1.1-1.2

Problems:

1. Sipser's book, Exercise 1.3 (same in both editions.) Make sure you include everything that a state diagram should include!
2. The rule for valid names for variables in C programs is the following. Variables must begin with a character (that is, a letter in the English alphabet) or underscore and may be followed by any combination of characters, underscores, or the digits $0-9$. Design a DFA that accepts strings that are valid variable names (For simplicity assume that $\Sigma=\{\langle c\rangle,\langle d\rangle,\langle u\rangle, \#\}$ where $\langle c\rangle$ denotes a character, $\langle d\rangle$ denotes a digit, and $\langle u\rangle$ denotes and underscore, and \# denotes any other possible ASCII character.
3. Give state diagrams of DFAs recognizing the following languages. In each parts the alphabet is $\Sigma=\{0,1\}$. As documentation for you DFA, for each state, give a brief informal description of the set of strings which reach this state.
(a) $\{w \mid w$ contains at least three 1 s.$\}$
(b) $\{w \mid w$ has length at least 3 and its third symbol is a 0.$\}$
(c) $\{w \mid w$ has an even number of 0 s and an odd number of 1 s . $\}$
(d) $\{w \mid w$ begins with a 1 , and which, interpreted as the binary representation of a positive integer, is divisible by 4$\}$.
For this problem assume that the DFA starts reading the string from its most signicant bit. For example if $w=1000$, then w is the binary representation of the (decimal) number 8 (and thus, is in the language). and the DFA starts by reading the bit 1 .
4. The reversal of a string w denoted by w^{R}, is the string when you look at it backwards: for example, homer ${ }^{R}=$ remoh. Here is the formal inductive definition (where the alphabet is Σ):

Base case. If $w=\epsilon$, then $w^{R}=\epsilon$.
Inductive step. If $w=v a$ for $v \in \Sigma^{*}$ and $a \in \Sigma$, then $w^{R}=a v^{R}$.
Prove by induction (on the length of y) that for all strings $x, y \in \Sigma^{*}$,

$$
(x y)^{R}=y^{R} x^{R}
$$

5. Extra Credit (minimal points, do it for the glory!) Sipser's book, Problem 1.37 in second edition (Problem 1.30 in the first edition.)
