CSE 322: Formal Models in Computer Science March 31, 2008

Reading Assignment: 0.1-0.4 (review) and 1.1-1.2

Problems:

- 1. Sipser's book, Exercise 1.3 (same in both editions.) Make sure you include everything that a state diagram should include!
- 2. The rule for valid names for variables in C programs is the following. Variables must begin with a character (that is, a letter in the English alphabet) or underscore and may be followed by any combination of characters, underscores, or the digits 0 9. Design a DFA that accepts strings that are valid variable names (For simplicity assume that $\Sigma = \{ < c >, < d >, < u >, \# \}$ where < c > denotes a character, < d > denotes a digit, and < u > denotes and underscore, and # denotes any other possible ASCII character.
- 3. Give state diagrams of DFAs recognizing the following languages. In each parts the alphabet is $\Sigma = \{0, 1\}$. As documentation for you DFA, for each state, give a brief informal description of the set of strings which reach this state.
 - (a) { $w \mid w$ contains at least three 1s. }
 - (b) { $w \mid w$ has length at least 3 and its third symbol is a 0. }
 - (c) { $w \mid w$ has an even number of 0s and an odd number of 1s. }
 - (d) { $w \mid w$ begins with a 1, and which, interpreted as the binary representation of a positive integer, is divisible by 4 }. For this problem assume that the DFA starts reading the string from its most signicant bit. For example if w = 1000, then w is the binary representation of the (decimal) number 8 (and thus, is in the language). and the DFA starts by reading the bit 1.
- 4. The reversal of a string w denoted by w^R , is the string when you look at it backwards: for example, $homer^R = remoh$. Here is the formal inductive definition (where the alphabet is Σ):

Base case. If $w = \epsilon$, then $w^R = \epsilon$. Inductive step. If w = va for $v \in \Sigma^*$ and $a \in \Sigma$, then $w^R = av^R$.

Prove by induction (on the length of y) that for all strings $x, y \in \Sigma^*$,

$$(xy)^R = y^R x^R$$

5. Extra Credit (minimal points, do it for the glory!) Sipser's book, Problem 1.37 in second edition (Problem 1.30 in the first edition.)