
CSE 322 - Introduction to Formal Methods in Computer Science
Turing Machines

Dave Bacon
Department of Computer Science & Engineering, University of Washington

Today we finally make it up to....computers! Well at least to the model which best captures what we mean by a
computer, the Turing Machine. Yeah!

Okay so what is a Turing machine? It’s a big box with an arrow coming out of it and a tape. Or at least that’s
the picture you’ll see drawn in most books. The box representing the computing machine and the tape represents a
memory where you can store information. The arrow represents the read-write head of the machine, which can, as
you might guess, read and write symbols on the tape. Oh, and by the way, the tape is infinite. Usually we make the
tape have one end, say the left and then go off for ever to infinity.

So how does a Turing machine work. Well some input is put onto the tape, with the leftmost symbol being at the
very beginning of the tape. Everywhere else the tape is blank (we define a blank symbol “ ”.) The Turing machine
read-write head starts at the first symbol on the tape. Then it proceeds to compute! How does it compute? Well it
has an internal state, like a finite automaton. But now it can make transitions to new states conditional on what state
it is in, and what symbol is currently under the read-write head on the tape. Further, when it makes a transition to
a new state, it can write a symbol onto the tape at the position where the read-write head is, and then it must move
the head either left or right. Finally the machine has two designated states which are accept and reject states. When
the machine enters these states it immediately halts and we say that the machine accepts or rejects the input. Note
that the machine doesn’t have to enter the accept or reject states: it can go on running forever and never halt.

Okay lets give a formal definition of a Turing machine. A Turing machine is going to be a seven tuple, the largest
tuple we’ve encountered! Okay here it is a Turing machine is the 7-tuple (Q,Σ,Γ, δ, q0, qa, qr) where

1. Q is a finite set, the set of states.

2. Σ is a finite set, the input alphabet no containing the blank symbol .

3. Γ is the tape alphabet, where ∈ Γ and Σ ⊆ Γ.

4. δ is the transition function. It is a function from Q× Γ to Q× Γ× {L,R}, δ : Q× Γ→ Q× Γ× {L,R}.

5. q0 ∈ Q is the start state

6. qa ∈ Q is the accept state

7. qr ∈ Q is the reject state and is not equal to the accept state, qa 6= qr.

Okay so the most important part of the definition, is, as always, the transition function. The transition function here
has a domain of Q × Γ. This represents the state of the machine and the symbol under the read write head before
the transition. The range of the function is Q× Γ× {L,R}. This presents what the state the machine will transition
to, what it will write on the tape before moving, and then whether the read-write head will move left or right. If the
machine is at the beginning of the tape and it receives instructions to move left, we keep the head at the beginning
of the tape.

As a Turing machine computes, the state of the machine can change as well as where the read-write head is as
well as what symbols are on the tape. Thus a configuration of a Turing machine is the specification of a state, the
location of a read-write head, and the symbols on the tape. We use a cute shorthand for specifying configurations.
In particular suppose that we are in the state q and the tape has the string w on it. Further suppose that we are
are location i in the tape string w = w1w2 . . . wm, then we can write w as w = uv where u = w1w2 . . . wi−1 and
v = wiwi+1 . . . wm. To express that we are currently in state q with the read-write head at this location we write this
as uqv. This completely specifies a configuration and is a nice shorthand.

Using this notation we can formalize how a Turing machine works. In particular we say configuration C1 yields
configuration C2 if the Turing machine can legally go from C1 to C2 in a single step. Suppose that a, b, c ∈ Γ and
u, v ∈ Γ∗ and that qi and qj are states. From these elements we can construct two configurations, uaqibv and uqjacv.
We say that uaqibv yields uacqjv if δ(qi, b) = (qj , c, R). Similarly we say that uaqibv yields uacqjv. There are, of
course, special cases. For example when we are on the left end, the configuration qibv yields qjcv if the transition is
left moving. Further technically we need to add the symbol to the configuration uaqi when we are making a right
transition.

2

Some more definitions. The start configuration of the machine M on input w is the configuration q0w. An accepting
configuration is one where the state of the configuration is qa. A rejecting configuration is one where the state of
the configuration is qr. Accepting and rejecting configurations together are called halting cofingurations. A Turing
machine M accepts input w if a sequence of configurations C1, C2, . . . , Ck exists, where

1. C1 is the start configuration of M with input w.

2. Each Ci yields Ci+1.

3. Ck is an accepting configuration.

The collection of strings that a machine M accepts is the language of M and is denoted, by, you guessed it L(M).
Okay a few more definitions. We say a language is Turing-recognizable if some Turing machine recognizes it (these

are sometimes called recursively enumerable languages.) Now Turing machines may end up not accepting by either
entering the reject state or by looping forever (not halting.) It is often useful to talk about Turing machines that
halt on all inputs. These machines never loop. We call such Turing machines deciders. A decider that recognizes
some language also is said to decide the language. This leads to the definition of Turing-decidable (sometimes just
called decidable). We call a language Turing-decidable if some Turing machine decides it. Note that every decidable
language is Turing-recognizable. However there are languages that are Turing-recognizable but not Turing-decidable.

I. EXAMPLE OF A TURING MACHINE

Lets describe a Turing machine which decides the language L = {w#w|s ∈ {0, 1}∗}. First lets understand how a
Turing machine might solve this. Basically what the machine will do to get to an accepting configuration is read the
first symbol, then cross it out, and then, remember what that symbol was, move until it reaches the #, and then
checks to see if the symbols match, and if they do cross it off and go back to the symbol after the one we crossed out,
and then continue in this same manner, except going to the first non-crossed off symbol in the transversals. Finally
we need to make sure that we accept if this is all that the input consists of.

Okay here is a formal description of a Turing machine which does this

1. Q = {q1, q2, . . . q8, qa, qr}

2. Σ = {0, 1,#} and Γ = {0, 1, x,#, }.

3. The start state is q1. The accept state is qa. The reject state is qr.

And now we need to specify the transition function. We do this with a state diagram.

��
q1

0→x,R

xxqqqqqqqqqqqqq

#→R

��

1→x,R

&&MMMMMMMMMMMMM

q20,1→R
33

#→R

��

q8

→R

��

x→R 33
q3 0,1→R

kk

#→R

��
q4x→R 33

0→x,L

&&MMMMMMMMMMMMM qa q5 x→Rkk
1→x,L

xxqqqqqqqqqqqqq

q6 0,1,x→L
kk

#→L

��
q7 0,1→L

kk

x→R

33

Now there are some points about this transition function which we should point out. First of all where is the reject
state qr? Well we have obmitted it. Indeed we have followed a convention where every allowed transition which is not

3

labeled is a transition to qr. Further note that all rules should be of the form s→ a, d where s, a ∈ Γ and d ∈ {L,R}.
But some of these don’t have an a, i.e. they are of the form s → d. This is shorthand for the fact that the same
symbol which is on the tape is being written onto the tape, i.e. that symbol is not changed. Finally we often write
multiple elements which lead to the transition separated via commas.

Let’s run through how this machine acts on an input. Lets do 010#010.

q1010#010
xq210#010
x1q20#010
x10q2#010
x10#q4010
x10q6#x10
x1q70#x10
xq710#x10
q7x10#x10
xq110#x10
xxq30#x10
xx0q3#x10
xx0#q5x10
xx0#xq510
xx0#q6xx0
xx0q6#xx0
xxq70#xx0
xq7x0#xx0
xxq10#xx0
xxxq2#xx0
xxx#q4xx0
xxx#xq4x0
xxx#xq6xx
xxx#q6xxx
xxxq6#xxx
xxq7x#xxx
xxxq1#xxx
xxx#q8xxx
xxx#xq8xx
xxx#xxq8x
xxx#xxxq8
xxx#xxx qa

Wowah. That was a bit long.

