Concatenation

Defn: For any X,Y C 2* define
XeY={xy|xeX&yeY}

CSE 322, Fall 2010 -
=13a
Nondeterministic Y ={&bbb)}
Finite State Machines X +Y = { a,ab, abb, abbb }

Y « X = { a,ab, ba, bab, bba, bbab }
note [X *Y| < [X] * [Y]

Power 9 X/\r S z*

LS Lok s
L3 Letoe E,M')(:r s ;’Y"}’["“XZ;”Y}
L = e Loddperit Loddparrty™ Lovun
C=¢e}
¥z % (LeL* irwy,

f8Y ifpze

n
b

Et= iwl lw‘!:x?
2% {w| \wl=v}
(iu{g})"& fw)meng

XY € 2%
Xa‘(c f/g,#['xtxz;/é\(}

Exompleg

X\t sz*
)(or c {,g.#['kexz;/&Y}

Exomples

L“u ru-'{, 'L-elug - LOM
ﬁ.‘B§ é % } Fo”ut?
YYnZ Fruts e 3

ridy. S 11w

XY € 2%
Xa‘(c f/g,#['xtxz;/é\(}

Exompleg

f‘BR = = -] Pessibh,]
A LW Foie

X\t sz*
)(or c {,g.#['kexz;/&Y}

Exomples

Exomples
LO Jdr.-/o"“ ¢ LW{Y= L‘i““;+
~10
Loas part, 'L.e,,“ = L,y
A8 =
4 R i } Po”'u.’
UnZ Frts Py

An idea for closure under concatenation, but not
clear how to do it — may need to stay in M, for
several visits to F before jumping to Ma.
E.g.:

{even parity} * {exactly 5 I’s}
which | is 5th from end?

Q:

® |s the class of regular languages closed
under concatenation?

® Again, for Java programs, say, it’s not too
hard to prove this.

® What about finite automata? Inability to
back up the input tape is one issue...

;iﬁ» o=

(U DFA ag & Yecoprizer:
((7-«\ S d JW"‘JOV

coo\ \ D 92\

\,3/, A d-'f?‘/,u,—,' Kt {‘/ :l%;‘:/‘k:
0,1 0,1
FIGURE 1.27 Ollgll’ 0::
oolol, 001l
[reot, 1l
1010, OIl0

10100, Oll0l

5;—; C P”')O""*& &

(U DFA 4o & Yecopmizer:
@ LG 60, d Jwr‘—""’

oo\ \ D oo\

\:?} A d:#‘p‘v’hd K.‘M ‘3‘(1e ;7('&

—

FIGURE 1.27

M) @ Wit weuldd & Wann/ hororcould
e dafva om gt vadit Feaprizy
R. Now detevmrucsy, e

S et
M- LQ,Z, S’Z'IF)
whaat fout=

- is*q«* (s+5)
ol €@ sheek chota

L3 g b S Calpleds)

. F s Q B ived thates
d ecaplng thete

& vauphe

§: qe(Tote})» 2> o

“I- 2 ‘7‘-"’ M
§L300) 2 {10)
SCan s L0 ”
[YCTNAER -

FIGURE 1.29

L ={ win {a,b}* | 3rd letter from the right
endof wis"a" }

L ={win {a,b}* | 3rd letter from the right
endof wis"a" }

FIGURE 1.31

D‘.$ﬂ % ”:/

T M oaccepts WeT
Si.'n-’«"sc.,z) Yesched "7 M afhter
Yead: Ww 1% an Mugzi.’\:g S"L‘ffkf
I.&,) ? ¢ F, :

Dafwn
"”r\\-l. lu«g% 'fwhisg_d_ L7M'

Lm) = {weZ® | Maccephs w3,

Note
Ew.n’ M recosn

80 anactl
one lengu, J4e wpleeit [y,
i+ "recopniza” both s-l-v:u;,g

T+ Wit accep? ared Huoge 14 to show M on w:
vaiwct Accepts—show one

V-*\’; "weportadd s o tas Hat “My&t path ending in F
. “ Rejects—show all
ba ty awn-fiudd b " doas
Wk gy “rejest” paths fail to end in F
] .

¢-1
19

vt}"u'r" \.r#n. " ”>
" .

M&idgin stelc 7 aflon
Vc-uo(nz W #es” f

() We W, Wy o bh
whae wy ¢« T ufg}

(2) 3 ahele

Yo, Vi Yy Yy &P

Example “guess & check’:
L={a"| nisamultiple of 2,3,50r 7}

a
@) Note: equiv DFA has 2#3*5%7
a states and messy set of final states
& a
—> 0 —> 0
@0 —¢]

Guess Check

20

L ={ win {a,b}* | 3rd letter from the right
endof wis"a" }

21

Nondeterminism: How

* View it as a generator of a language
* View it as a recognizer of a language
- “build the tree”
- explore all paths

- guess-and-check

23

(Non-)Example

L={aP|pis prime}

@

Q:is M deterministic?

Q:Does M accept aP for every prime p?
Q:does L(M) = 1?

Q: but, doesn’t it always guess right?

22

Nondeterminism:Why

* Specifications: say, clearly & concisely, what, not how
* Precise, and often concise specification

- “do A or B, but | don’t yet know/don’t want clutter of saying
which”

- Sometimes exponentially more concise - “3" letter from end”
* Natural model of incompletely specified/partially known systems

- if correct wrt a partial spec, then correct wrt any
implementation consistent with that spec

- “is state ‘reactor boiling / control rods out’ unreachable, even
allowing for unknown behavior of subsystem X?

24

Kleene Star

* Defn: L* = Upzo L1
* Examples
i) 2*:a simple special case

i) L={aPb | p is prime}
L*={e} u {aPibaP,b ..baPkb | k=1,
and each p; is prime}

Givem NEB M, can build one Fo L2

et é@

L - M

Closure under union

2{__8)
@Z o
512
= I
Mo,

>

Givem NEB M, can build one Fo L2

#°
R

m

‘f’WUV\ NP M, can bu:(Jm‘Fa\.LCN)*.?

——
‘JF%C' @) (may l;le(j)ect €)
~

m

vaw NEP M, can bu:lJm-FnL(N)*.?

6.5 4.8
v oY

No, may accept extra stuff (if M can
loop back to start before reaching F)

‘f’WUV\ NEP M, can bu:(Jm‘Fa\.LCN)*.?

6.8 4EL°
5

)
A O

vaw NFEP M, can bu:lJm-FnL(N)*.?
o%.°)
a2l

L 3

Givem NFP M, can bu:lJm'FaL(“')*.?

<

;a@ Jes!
‘e [, -

33
Closure under *,
For the correctness proof, there are usually 2 directions, namely:
(L(N1))* € L(N) and L(N) < (L(Ny))*
Trace really

1) (L(Ni))* € L(N), or, equivalently, given any k = 0 and any k strings x|, shouldbe
rio, 2i0,

X2, ...y Xk, €ach in L(N1), show that their concatenation xiex2* ... *xk = X is in ', e
L(N). For this direction, let ri, ril, ri2, ..., rinj be an accepting trace (in Nj) alternately

. . . eQ, exu{e},
for x;, | <i < k. Note qi = rig, (Why?) and rin; € F (why?) The key ideais ¢ siides are
that you can glue these together using the new start state and the new & ;m.a" &lm

eing lazy.

transitions (green state/arrows) to build an accepting trace in N for x.
Namely: qo, rio, ri1, 712, .., Finy, 120, 21, 122, ey F20, wey TKO, ooy Tk € F This is a
valid accepting trace in N since all transitions in that sequence are either
transitions of N, hence in N, or are € transitions from a final state of N, to
N/’s start state q| = rjo = r0 = ..., hence again in N. .. x € L(N).

35

Closure under *

General strategy: such proofs are usually constructive, i.e., given a
(generic) NFA Ny, we construct a “new” NFA, N. In this case:

[Notation changed slightly
to match Thm 1.49 in
Sipser; see it for careful
description of N vs N]

Ni, “Old”: blue
N,“New”: blue + green

Then prove the correctness of the construction, i.e., that L(N) =
(L(N1))*. Proof idea: connect computation trace(s) of “old” NFA to
ones in “new” NFA, where a “trace” means, recalling the definition
of “M could be in state q after reading w,” the/a sequence of states/
transitions/edges M follows/could follow on some input.

34

Closure under *,
1

2) L(N) € (L(N1))*, or equivalently, given any x in L(N), show that it can be
broken into k = 0 substrings X1, X2, ..., Xk, (i.€., X = X|*X2* ... *Xk) so that
each is in L(N). For this direction, suppose qo = ro, ri, ra, ..., € Fis an
accepting trace (in N) for x. Note that r| = q), since the only transition
leaving qo goes to qi (and is labeled €). Let x| be the concatenation of all
edge labels up to (but excluding) the next green edge (i.e., an €&-move
from a final state back to qi). Note that x; € L(Ny), since the included
transitions are all present in N and run from its start state to a final
state, so they are an accepting trace in Nj. Similarly, let x2 be the
concatenation of all edge labels up to the next green edge, ..., and xi those
after the last green edge. By the same reasoning, each x; € L(N)), for each
| <i < k. Finally, note that x = xj*x2* ... *Xk since the excluded transitions
are all e-moves. . x € (L(N))* QED

36

Closure under *, Closure under
Leftovers Concatenation

There are a few points in the proof above that | deliberately
didn’t address. | strongly suggest that you think about them and
see if you can fill in missing details and/or explain why they
actually are covered, even if not explicitly mentioned. | suggest
you write it (but no need to turn it in).

2 NFR9 M, Mo Lpzbinvg)

* Are x = £/ k = 0 correctly handled, or do you need to say
more?

* Is it a problem if N/’s start state is a final state?

* Is it a problem if N| includes €-moves from (some or all states
in) F to qi?

* Is there anything else | omitted? Final states of M|

no longer final

37 38

NFA == DFA, ¥o=
or not? Symbol read

FIGURE 1.29

39 40

Dafn
My &My eguivedent is LIM) L (My)
Theovew 139
V ’0‘0- A, a%*‘V‘M J;ﬂ- M
;;N‘_NNS(Gti,s,x‘/ F)
hola M= (Q',S‘s.":’F.)
(Warm “‘P: e "Nau,)
Q= 2°
{.‘ . {803
F's {Ree | RnF# 4]

Vael, ¥ Req:

SR U $(ea)
CeR

a4

Db
/df% 2 @ A 3-state

NFA

The equivalent
23 = 8-state DFA,
built as in
Theorem 1.39

(4 states on left are not
reachable from start state
but are part of the DFA.)

Vae3, v eca: An example transition:

URE }{K $C0a) [5({1,2,3),b) = 8(1,b) U B(2.b) UBB.b) = {1} u {3} u @ ={1,3}

43

L ={win {a,b}* | 3rd letter from the right
endof wis"a" }

FIGURE 1.31

42

L ={ win {a,b}* | 3rd letter from the right
endof wis"a" }

%a\ Exercise: apply
. X the construction
/ / to the NFA

below.

Note:You will
not get the DFA
above (but it will
be equivalent).

FIGURE 1.31

44

Simulation of NFAs by DFAs: Notes on the Proof of Theorem 1.39

W. L. Ruzzo 15 Oct 10

The text’s assertion that the construction given in the proof of Theorem 1.39 (Ist ed: 1.19) is “obviously
correct” is a little breezy. Here is an outline of a somewhat more formal correctness proof. I will only handle
the case where the NFA has no e-transitions. Notation is as in the book.

For any x € ¥*, define

Qnge = {r e Q| N couldbe in state 7 after reading 2}, and
Qme = thestate R € Q' that M would be in after reading .

The key idea in the proof is that these two sets are identical, i.e., that the single state of the DFA faithfully
reflects the complete range of possible states of the NFA. The proof is by induction on |z|.
BasIS: (|| = 0.) Obviously = = €. Then

Qne = {90} =40 = Qm,e-

The first and third equalities follow from the definitions of “moves” for NFAs and DFAs, respectively, and
the middle equality follows from the construction of M.

INDUCTION: (|z| =n > 0.) Suppose Qn,y, = Qar,y for all strings y € X* with |y| < n, and let z € X*
be an arbitrary string with |z| = n > 0. Since z is not empty, there must be some y € X* and some a € ¥
such that z = ya. Forany r € @,

N could be in state r after reading © = ya (1)
& there is some 7’ € @ such that N could be in 1’ after reading y and r € §(r’, a) (2)
s re |l at'a (3)

45

Dap
M, &M, %uWM i LCM) sLimy)
¥ 1fa N T eguvakd du M
’—N‘—“ Ne (G 'sl, 5,;., F)
‘:’l_& M= (Q“ E,‘.;‘:,F')

(Warwm \LP: e i-mou,)

Q: 2°

z: . {gos

F'e {Req | RnF#4]
Vael, v keq:

'R U $(ea)
ceR

No &-
moves

47

reflects the completé range of possible states of the NFA. The proof is by induction on |2
BAsIS: (|z| = 0.) Obviously z = €. Then

Qne={q0} =90 = Qnr.e-

The first and third equalities follow from the definitions of “moves” for NFAs and DFAs, respectively, and
the middle equality follows from the construction of M.

INDUCTION: (|| =n > 0.) Suppose Qn,, = Qs for all strings y € X* with |[y| < n, and let z € X*
be an arbitrary string with || = n > 0. Since z is not empty, there must be some y € X* and some a € X
such that z = ya. Forany r € @,

N could be in state r after reading « = ya (1)
< there is some r’ € @ such that N could be in ' after reading y and r € 6(r/, a))
& re U 5(r',a) 3)

TEQNy
& red(Qny.a) @)
& re 5/(QMJ/, a) 5)
< r€QMa (6)

The equivalence of (1) and (2) follows from the definition of “moves” for NFAs: the last step must be a move
from some state reached after reading y. The equivalence of (2) and (3) is just set theory. The equivalence
of (3) and (4) follows from the definition of §’. The equivalence of (4) and (5) follows from the induction
hypothesis. The equivalence of (5) and (6) follows from the definition of “moves” for DFAs.

Given the equivalence established above, it’s easy to see that L(N) = L(M), since N accepts z if and
only if it can reach a final state after reading 2, which will be true if and only if Qy , contains a final state,
which happens if and only if Qa7 . € F'.

46

Dap
M, &My rﬁu%vM i LCMy) sLomy)

Theovew 131
¥ nfe Edﬁu-‘v-hd M M

JuNe@.5,6,0,F)

lv::_u M= (Q‘,s"a'{:, Fo) &
-‘“'-“-lr-'-n-s-m-..,-» Full irprm:
, ° Vi, £- wows
Q=2 Yes, &-

4

1 - E({t.}) moves.
: {Regg | RaF# ¢} NB: do &-

B
Vaed, ¥ Req: moves before
s'<&,g); UE(S(““)) start, dfter

ceR other moves,

Vikie a not both
B(Rs {54 ractutt by Dolore after
O ore. g-voved M S, ¢ 6k}

¢

48

0,1

FiGure 1.27

Notes on Subset
Construction:
1) only the top 6
states are reachable
from the start state,
but all 16 are
required by the
construction.
2) £ moves come
after = moves. E.g.,
S'({aght) =2,
not{q, 4).

{ap: a3,
agt

