
CSE 322

Exam Reviews

Basic Concepts

•  Formal Languages
–  Alphabet (!)
–  String (!*)
–  Length (|x|)
–  Empty String (")
–  Empty Language (#)

•  Language/String
Operations
–  “Regular” Operations:

•  Union ($)
•  Concatenation (•)
•  (Kleene) Star (*)

–  Other:
•  Intersection
•  Complement
•  Reversal
•  Shuffle
•  ...

Finite Defns of Infinite Languages

•  English, mathematical
•  DFAs

–  States
–  Start states
–  Accept states
–  Transitions (% function)
–  M accepts w & !*
–  M recognizes L ' !*

•  Nondeterminism
•  NFAs

–  Transitions (% relation)
•  Missing out-edges

•  Multiple out-edges

•  "-moves
–  N accepts w & !*
–  N recognizes L ' !*

•  Regular Expressions
–  # , ", a & !, $, •, * , ()

•  GNFAs

Key Results, Constructions, Methods

•  L is regular iff it is:
–  Recognized by a DFA
–  Recognized by a NFA
–  Recognized by a GNFA
–  Defined by a Regular Expr

Proofs:
GNFA (Reg Expr

(Kleene/Floyd/Warshall: Rik Rkk* Rkj)

Reg Expr (NFA
 (join NFAs w/ "-moves)

NFA (DFA
(subset construction)

•  The class of regular
languages is closed
under:
–  Regular ops: union,

concatenation, star
–  Also: intersection,

complementation,
(& reversal, prefix,
no-prefix, …)

•  NOT closed under ⊆, ⊇

•  Also: Cross-product
construction (union, …)

Applications

•  “globbing”
–  lpr *.txt

•  pattern-match
searching:
–  grep “Ruzzo.*terrific” *.txt

•  Compilers:
–  Id ::= letter (letter|digit)*
–  Int ::= digit digit*
–  Float ::=

 d d* . d* (" | E d d*)
–  (but not, e.g. expressions

with nested, balanced
parens, or variable names
matched to declarations)

•  Finite state models of
circuits, control systems,
network protocols, API’s,
etc., etc.

Non-Regular Languages

•  Key idea: once M is in
some state q, it doesn’t
remember how it got
there.
E.g. “hybrids”:

if xy & L(M) and
x, x’ both go to q, then
x’y & L(M) too.

E.g. “loops”:
if xyz & L(M) and
x, xy both go to q, then
xyiz & L(M) for all i) 0.

•  Cor: Pumping Lemma
•  Important examples:

L1 = { anbn | n >0 }
L2 = { w | #a(w) = #b(w) }
L3 = { ww | w&!* }
L4 = { wwR | w&!* }
L5 = { balanced parens }

•  Also: closure under *,
complementation
sometimes useful:
–  L1 = L2 * a*b*

•  PS: don’t say “Irregular”

Context-Free Grammars

•  Terminals, Variables/Non-Terminals
•  Start Symbol S
•  Rules (
•  Derivations +, +*
•  Left/right-most derivations
•  Derivation trees/parse trees
•  Ambiguity, Inherent ambiguity

•  A key feature: recursion/nesting/matching, e.g.

 S ((S)S | "

Pushdown Automata

•  States, Start state, Final states, stack
•  Terminals (!), Stack alphabet (,)
•  Configurations, Moves, |--, |--*, push/pop

Main Results

•  Every regular language is a CFL
•  Closure: union, dot, *, (Reversal; ! w/ Reg)
•  Non-Closure: Intersection, complementation
•  Equivalence of CFG & PDA

–  CFG ' PDA :
top-down(match/expand), bottom-up (shift/reduce)

–  PDA ' CFG: Apq

•  Pumping Lemma & non-CFL’s
•  Deterministic PDA != Nondeterministic PDA

Important Examples

•  Some Context-Free Languages:
–  { anbn | n > 0 }
–  { w | #a(w) = #b(w) }
–  { wwR | w & {a,b}* }
–  balanced parentheses
–  "C", Java, etc.

•  Some Non-Context-Free Languages:
–  { anbncn | n > 0 }
–  { w | #a(w) = #b(w) = #c(w) }
–  { ww | w & {a,b}* }
–  "C", Java, etc.

Curiously, their
complements
are CFL’s

Applications

•  Programming languages and compilers
•  Parsing other complex input languages

–  html, sql, …
•  Natural language processing/

Computational linguistics
–  Requires handling ambiguous grammars

•  Computational biology (RNA)

The big picture

Ability to specifiy and reason about abstract
formal models of computational systems is an
important life skill. Practice it.

