Finite State Automaton (FSA)
ξ pieces

- States
- Alphabet
- Transitives
- Stunt
- Final or Accept

An Example

$$
\begin{aligned}
& \Sigma=\{0,1\} \\
& L=\left\{W \in \Sigma^{*} \left\lvert\, \begin{array}{l}
\text { wot } 1 \text { is in } \\
\text { wisconsin }
\end{array}\right.\right\}
\end{aligned}
$$

The "obvious" algorithm: first count the 1 's, then decide whether the count is even:

It works, but is not a finite state machine. This is:

Formal definition:
A finite state muchion

$$
M=(Q, \bar{z}, \delta, q, F)
$$

where fructose (stats)
q. $\in Q$ startatats
\sum is a fonts est (alphabet)
$F \leq Q \quad \begin{aligned} & \text { Findetatees } \\ & \\ & \\ & \text { Accepting state }\end{aligned}$
S: $Q \times \bar{\Sigma} \rightarrow Q$ transition
function

Formal version of the above example (done 2 different ways):

$$
M_{\text {Parity }}=\left(Q_{0}, \Sigma, \delta, q_{0}, F\right)
$$

where

$$
\begin{aligned}
& Q=\{\text { even, odd }\} \\
& \Sigma=\{0,1\} \\
& f_{0}=\text { even sones elements }
\end{aligned}
$$

Fe \{even \} ~ c a ~ s e t ~ c o n t a i n i n g ~ one clement $\}$

$$
\delta(p, a): \frac{1 \text { a o }}{\substack{\text { even } \\ \text { oven odd } \\ \text { oven } \\ \text { odd seen }}}
$$

Even more sucernetly if we let $Q=\{0,1\}$ also

Another example:

$$
\begin{aligned}
& \Sigma=\{a, b\} \\
& L=\left\{w \mid 3^{\text {nd }}\right. \text { whtu from the } \\
&\text { right end of wis "a"\} }\}
\end{aligned}
$$

aab i
bab N
$a b b$ r
*a4

$$
\left.\begin{array}{l}
a b \\
a \\
\varepsilon
\end{array}\right) N
$$

