
(1) DFA as a recoguizer.
(2)

$$
\cdots \frac{\text { generator }}{000110001}
$$

(3) A different Kike of quarector:

(4) Q. What would it mean/howrcould we define an equaivalent recogniser
A. Non determinism

Figure 1.27

FIGURE 1.29
nondeterministras
A finite \&fate machom

$$
M=(Q, \overline{2}, \delta, q \in F)
$$

where frocto

- Q is scet (stats)
-q $\in Q$ startatotes
$-\sum$ is a finite est (alphaber)
- $F \leq Q$ Findetates

Accepting etato
S: $Q \times \bar{z} \rightarrow Q$ trausition
function

$$
\delta: Q \times\left(\Sigma_{u}\{\varepsilon\}\right) \rightarrow 2^{a} \text { transition }
$$

E.g. for foybra M

$$
\begin{aligned}
& \delta(8,0)=\{8,\} \\
& \delta(81,1)=\{q, 18=\} \\
& \delta(82,1)=\%
\end{aligned}
$$

-6.8

Figure 1.31

$L=\left\{w\right.$ in $\{a, b\}^{*} \mid$ 3rd letter from the right end of w is "a" \}

Masindsin state of after
readoug $\omega \in \sum^{*}$ if
(1) $\omega=\omega_{1} \omega_{2} \ldots \omega_{n}$
where $w_{i} \in \sum u\{\varepsilon\}$
(2) \exists atate $r_{0}, r_{1}, r_{2} \cdots r_{n} \in Q$

4t.
(a) $r_{0}=q_{0}$
(b) $\forall 1 \leq i \leq n$

$$
r_{i} \leqslant \delta\left(r_{i-1}, w_{i}\right)=r_{6}
$$

($r_{n}=6$
Fugt: quq is uniofre s is a Eunurys, (anceg an

Def
M accepts $w^{5} \in \Sigma^{*} \Leftrightarrow$ ha stare, of, reached by M after reading w is an accepting state, lie, $q \in F$.

Def
The language recognised by M,

$$
L(M)=\left\{W \in \Sigma^{*} \mid \text { Maccepts } w\right\} \text {. }
$$

Note
Every M recognizes exactly One language. Implicitly,
?? it "recognizes" both strings it must accept and those it must reject.
Very important: notes that "might be in a nonetinal stat" does ant imply "reject".

