8. For languages $A, B \subseteq \Sigma^{*}$, define $\operatorname{ShUFFLE}(A, B)$ to be the set

$$
\left\{w \mid w=a_{1} b_{1} a_{2} b_{2} \cdots a_{k} b_{k} \text { where } a_{1} \cdots a_{k} \in A \text { and } b_{1} \cdots b_{k} \in B, \text { with each } a_{i}, b_{i} \in \Sigma^{*}\right\}
$$

Show that the regular languages are closed under shuffle. Give both a short, convincing, one paragraph "proof idea" similar to those in the text, and a formal proof. Hint: A variant of the "Cartesian product" construction in Theorem 1.25 may be useful. And, yes, "induction is your friend."
Note: Read the definition carefully. It says " $a_{1} \cdots a_{k} \in A$," not " $a_{1}, \ldots, a_{k} \in A$ "; the later specifies k strings, each individually in A; the former specifies k strings, perhaps none in A, whose concatenation (in order) is a single string in A.

$$
\delta\left(\left(q_{1}, q_{2}\right), c\right)=\begin{aligned}
& \left\{\left(s_{1}\left(q_{1}, c\right), q_{2}\right),\right. \\
& \left.\left(q_{1}, \delta_{2}\left(q_{2}, c\right)\right)\right\}
\end{aligned}
$$

This works in part since, without loss of generality, every (ai ,bi) pair has $|a i b i|=1$, i.e. one is epsilon, the other a single character.

Relating edens of 6^{\prime} to paths 16
A path in 6 : any sequence 1 states
A simple Path ing: any sequences of $\geqslant 2$ stats st. $1^{\text {st }} 2$ last are not k, and all intermediats ones (ifany) ark.

$$
\begin{aligned}
& i \rightarrow j \\
& i \rightarrow k \rightarrow j \\
& i \rightarrow k \rightarrow k \rightarrow j
\end{aligned}
$$

The Port:
(a) every path in G can be decomposed into simple paths
(b) every edge in G^{\prime}, say $i \rightarrow j$, corresponds to the self all simple pathos in 6 with those end porats

Q: what strings acepted by

$$
\begin{aligned}
& \left\{w \mid w=x_{1} x_{2} \text { with } x_{1} \in L_{1} \Delta x_{2} c_{5}\right\} \\
& =L_{1} \cdot b_{5} \\
& q_{0} \rightarrow q_{0} \rightarrow q_{2} \rightarrow q_{2} \rightarrow q_{3} q_{1} \rightarrow q_{6} \\
& L_{1} \circ L_{2} \cdot L_{g} \cdot L_{4} \cdot L_{5} \\
& L=\bigcup_{\text {pathop }} \text { covent of } L_{i} \text { oupathp }
\end{aligned}
$$

Claim 2
$L\left(r_{i j}^{\prime}\right)=\{w / G$ can move from i to j reading w and passing through no intermediate states exeunt possibly K. $\}$
Equivaluaty:
$h\left(r_{i j}^{i}\right)=\{\omega \mid G$ can more from ito j pacing wo along a simple path $\}$

$$
\approx L\left(r_{i j} \cup r_{i k} \cdot r_{k k}^{*} \cdot r_{k j}\right)
$$

Cla.in 4 NFA 3 equiv. rey.-expr.
Praf: NFA \rightarrow GMFA $\rightarrow 2$-stat GNFA \rightarrow Ric. by inductionark, unom dam I

EXAMPLE 1.68

In this example we begin with a three-state DFA. The steps in the conversion are shown in the following figure.

(e)

FIGURE 1.69

Converting a three-state DFA to an equivalent regular expression

Summary
L is reqular \Longrightarrow
2 ンL(M) fu same DFAM

$$
\begin{aligned}
& \Leftrightarrow L=L(N) \quad \cdots \cdot N F A N \\
& \Rightarrow L=L(G) \ldots \cdot . \cdot G N F A G \\
& \Leftrightarrow L=L C R \cdots \text { reg.etp.R }
\end{aligned}
$$

