Given a requan lmpaqee
2 a story x how hand :s it to decide

- $x \in L$?
- $L=\phi$?
- $L=\Sigma^{*}$?

A key issue: how is L singenerd an infinite thing) "given" as input to our program? Some options

1. DFA
2. NFA
3. Rey.Exp.
4. A Jun program

Does it matier?

How much can we compute?

Visualize a fast small computer, say:
One petaflop (10^{15} ops sec^{-1})
Femtometer $\left(10^{-15}\right)$ in diameter (\sim size of a neutron)
Buy a few: say enough to pack the visible universe
Radius of visible universe:
10^{10} light years $\times \pi \times 10^{7} \mathrm{~s} /$ year $\times 3 \times 10^{8} \mathrm{~m} / \mathrm{s}=10^{26} \mathrm{~m}$
Volume: $\left(10^{26}\right)^{3}=10^{78} \mathrm{~m}^{3}$
\# processors: $10^{78} /\left(10^{-15}\right)^{3}=10^{123}$ (.1 yotta-googles)
Let it run for a little while, say 10^{10} years
$10^{10} \mathrm{yr} \times \pi \times 10^{7} \mathrm{~s} / \mathrm{yr} \times 10^{15} \mathrm{ops} / \mathrm{s} \times 10^{123}$ processors
$=10^{155}$ ops since the dawn of time (somewhat optimistically)
$2,2^{2}=4,2^{2^{2}}=2^{4}=16,2^{2^{2^{2}}}=2^{16}=65536,2^{2^{2^{2^{2}}}} \approx 10^{20000}$

Contuxt-free lamperges

$$
\left.\Sigma=\left\{a_{1}+1 n_{1}, l_{2}\right)\right\}
$$

$P_{4 / s}\left[\begin{array}{l}E \rightarrow P \div E \\ E \rightarrow P * E \\ E \rightarrow P(E) \\ P \rightarrow C\end{array}\right.$

$$
(a)
$$

If $C F G G=(U, \Sigma, R, S)$
V a forsticest (V̈arieble")

$$
v_{\Omega} \Sigma=\phi
$$

$S \in V$

$$
a+(a)
$$

R isa finite wabret

$$
\text { of } V x\left(v v_{\bar{\Sigma}}\right)^{*}
$$

$$
\begin{aligned}
& \rightarrow \quad \text { in viles } \\
& \Rightarrow \quad \text { "ysilds" }
\end{aligned}
$$

relationon atorgsin (UuE)*

$$
\alpha A \beta \Rightarrow \alpha \gamma \beta
$$

if $A \rightarrow \gamma$ is a rule
for ace $x, \beta \in(U \cup \Sigma)^{*}$
\Rightarrow " "devives"

$$
\begin{aligned}
& \alpha \Rightarrow{ }^{*} \beta \text { mannd } \exists \alpha_{1} \alpha_{2} \cdots \alpha_{k} \\
& \alpha \Rightarrow \alpha_{1} \Rightarrow x_{2} \Rightarrow \alpha_{3} \cdot \alpha_{k} \Rightarrow \beta \\
& L(\sigma)=\left\{w \in \Sigma^{*} \mid S \Rightarrow^{*} w\right\}
\end{aligned}
$$

