Trees, Derivations and
Ambiguity

A grammar A tree

E— PrE =
* E /1™
2307 HE
g> () |
P < “or
| <

3 derivations correspond to same tree (same rules being used in the

same places, just written in different orders in the linear derivation)
|) E =>P+E => a+E => a+P => a+a -«
2) E=>P+E => P+P => a+P => a+a
3) E=>P+E => P+P => P+a => a+a

But only one leftmost derivation corresponds to it —

(and vice versa). (see HW#7 for more)

Another grammar for the
same language:

E — E+E | E*E | (E) | a

(EXPR) (EXPR)
N /) O\
(EXPR) (EXPR) (EXPR) (I}:XPR)\
/7
(EXPR) | (EXPR) \ / (EXPR)) (EXPR)
(\ / \
a + a X a a + a X a

FIGURE 2.6
The two parse trees for the string a+axa in grammar Gs

This grammar is ambiguous: there is a string in L(G) with two different
parse trees, or, equivalently, with 2 different leftmost derivations. Note
the pragmatic difference: in general, (a+a)*a != a+(a*a); which is right?

E o E+FE ‘E-#.E.l&

> E+E
ave 7 Uuoa S ’7\ i} a+E
= EXPR) = G+ EXE.
N FaiaxE
(EXPR) (EXPR) (EXP R) (EXPR) =% A4 A
2 A\
(EXPR) ((EXPR) \ / (EXP/R)> (EXPR)
(\ /s \

o a + a X a a + a X a
(2 « Q) % & . C{ K ;)
FIGURE 2.6 |
The two parse trees for the string a+axa in grammar Gs

L aphwo et ooV
Ew E*E‘ ﬁ+5*£¢q+e,‘§
/.) 2, A+4.g¢£

Yrids -, A+anb <

4 a[e o
‘;‘a::. 5-52;; &% AS) F PE 2a D giq¥a // 20-!

The “E, P” grammar again

E—+ PrE
Px¢E
Eat

This grammar is unambiguous.
(Why? Very informally, the 3 E rules generate P((‘+’u’*’)P)
and only via a parse tree that “hangs to the right”, as
shown.)
But it has another undesirable feature: Parse
tree structure does not reflect the usual
precedence of * over +. E.g, tree at lower

right suggests “a*a+a==a* (a+a)”

*

5 - v

—r

f"-—‘b\

- a\ 1))

*
>
/

A Apg-—1)'

)
A
~

>

7h) (.

H=—

¥

X

AI—M

+

EXAMPLE 2.4 ..

Consider grammar G4 = (V, 3, R, (EXPR)).
V is {(EXPR), (TERM), (FACTOR) } and ¥ is {a, +, x, (,) }. The rules are

(EXPR) — (EXPR)+(TERM) | (TERM)
(TERM) — (TERM)x(FACTOR) | (FACTOR)
(FACTOR) — ((EXPR)) |a

The two strings a+axa and (a+a)xa can be generated with grammar Gj.
The parse trees are shown in the following figure.

(EXPR)
\
(TERM)
(EXPR)
(;Xpm \(TERM> (FACTOR)
(TERM) /
/ (TERM) \
(FACTOR) / (FACTOR)
(FA(CTOR) /
a + a X a (a + a) X a

A more complex grammar, again the same language. This one is unambiguous
and its parse trees reflect usual precedence/associativity of plus and times.

L

L:{ a:f'LJCU"/ ‘e] oo =k ;

)
) A-C[Dl3
A" aAb /5
Ca cC \t
19 R a P ¥
B> hBelc
“(06“ c'"""
‘006’16“
q(v“‘c‘.

G is ambiguous

Can we always tweak the grammar
to make it unambiguous?

No! This language is a CFL; see grammar at
left. Easy to see this G is ambiguous. Hard
to prove, but true, that every G for this L is
also ambiguous. Hopefully this is fairly
intuitive—strings of the form a"b"c" can
come from the i=j or j=k path

L is inherently ambiguous, meaning every G for L is ambiguous

Some closure results
for CFLs

The svetsen,

f’ CFL; cve c(osasl unelo
U, , *

/

c.'l.

g Cfﬂ"s.
A ¥apute lpyu’-—

? faf fneol
ﬂeé:m cetle o B,f€ , 15

vs VivVa “‘ts?
Q-‘- R.UQ-LU{ 5-95'5‘;

vV »é ¢ V"'L‘L
§="x &£ Y
: ¥ 4
: SDS S F x5 Xy
L QG ley & LCE

