Trees, Derivations and
Ambiguity
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3 derivations correspond to same tree (same rules being used in the

same places, just written in different orders in the linear derivation)
|) E =>P+E => a+E => a+P => a+a -«
2) E=>P+E => P+P => a+P => a+a
3) E=>P+E => P+P => P+a => a+a

But only one leftmost derivation corresponds to it —

(and vice versa). (see HW#7 for more)



Another grammar for the
same language:
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FIGURE 2.6
The two parse trees for the string a+axa in grammar Gs

This grammar is ambiguous: there is a string in L(G) with two different
parse trees, or, equivalently, with 2 different leftmost derivations. Note
the pragmatic difference: in general, (a+a)*a != a+(a*a); which is right?
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The two parse trees for the string a+axa in grammar Gs
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The “E, P” grammar again

E—+ PrE
Px¢E
Eat

This grammar is unambiguous.
(Why? Very informally, the 3 E rules generate P((‘+’u’*’)P)
and only via a parse tree that “hangs to the right”, as
shown.)
But it has another undesirable feature: Parse
tree structure does not reflect the usual
precedence of * over +. E.g, tree at lower

right suggests “a*a+a==a* (a+a)”
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EXAMPLE 2.4 ..............................................................................................................................

Consider grammar G4 = (V, 3, R, (EXPR)).
V is {(EXPR), (TERM), (FACTOR) } and ¥ is {a, +, x, (,) }. The rules are

(EXPR) — (EXPR)+(TERM) | (TERM)
(TERM) — (TERM)x(FACTOR) | (FACTOR)
(FACTOR) — ((EXPR)) |a

The two strings a+axa and (a+a)xa can be generated with grammar Gj.
The parse trees are shown in the following figure.
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A more complex grammar, again the same language. This one is unambiguous
and its parse trees reflect usual precedence/associativity of plus and times.
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G is ambiguous

Can we always tweak the grammar
to make it unambiguous?

No! This language is a CFL; see grammar at
left. Easy to see this G is ambiguous. Hard
to prove, but true, that every G for this L is
also ambiguous. Hopefully this is fairly
intuitive—strings of the form a"b"c" can
come from the i=j or j=k path

L is inherently ambiguous, meaning every G for L is ambiguous



Some closure results
for CFLs
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