
Trees, Derivations and
Ambiguity

A treeA grammar

3 derivations correspond to same tree (same rules being used in the
same places, just written in different orders in the linear derivation)

1) E => P+E => a+E => a+P => a+a

2) E => P+E => P+P => a+P => a+a

3) E => P+E => P+P => P+a => a+a

But only one leftmost derivation corresponds to it
(and vice versa). (see HW#7 for more)

Another grammar for the
same language:

E → E+E | E*E | (E) | a

This grammar is ambiguous: there is a string in L(G) with two different
parse trees, or, equivalently, with 2 different leftmost derivations. Note
the pragmatic difference: in general, (a+a)*a != a+(a*a); which is right?

The “E, P” grammar again

This grammar is unambiguous.
(Why? Very informally, the 3 E rules generate P((‘+’∪’*’)P)*
and only via a parse tree that “hangs to the right”, as
shown.)

But it has another undesirable feature: Parse
tree structure does not reflect the usual
precedence of * over +. E.g., tree at lower
right suggests “a * a + a == a * (a + a)”

A more complex grammar, again the same language. This one is unambiguous
and its parse trees reflect usual precedence/associativity of plus and times.

Can we always tweak the grammar
to make it unambiguous?

No! This language is a CFL; see grammar at
left. Easy to see this G is ambiguous. Hard
to prove, but true, that every G for this L is
also ambiguous. Hopefully this is fairly
intuitive–strings of the form anbncn can
come from the i=j or j=k path

G is ambiguous
L is inherently ambiguous, meaning every G for L is ambiguous

Some closure results
for CFLs

