CSE 322

Exam Reviews

Basic Concepts

- Formal Languages
 - Alphabet (Σ)
 - String (Σ^*)
 - Length (|x|)
 - Empty String (ε)
 - Empty Language (∅)

- Language/String Operations
 - "Regular" Operations:
 - Union (∪)
 - Concatenation (•)
 - (Kleene) Star (*)
 - Other:
 - Intersection
 - Complement
 - Reversal
 - Shuffle
 - ..

Finite Defns of Infinite Languages

- English, mathematical
- DFAs
 - States
 - Start states
 - Accept states
 - Transitions (δ function)
 - M accepts $w \in \Sigma^*$
 - M recognizes $L \subseteq \Sigma^*$

- Nondeterminism
- NFAs
 - Transitions (δ relation)
 - Missing out-edges
 - Multiple out-edges
 - ε-moves
 - N accepts w ∈ Σ*
 - − N recognizes L \subseteq Σ *
- Regular Expressions
 - $-\varnothing$, ϵ , $a \in \Sigma$, \cup , •, *,()
- GNFAs

Key Results, Constructions, Methods

- L is regular iff it is:
 - Recognized by a DFA
 - Recognized by a NFA
 - Recognized by a GNFA
 - Defined by a Regular Expr

Proofs:

GNFA → Reg Expr

(Kleene/Floyd/Warshall: R_{ik} R_{kk}* R_{kj})

Reg Expr → NFA

(join NFAs w/ ε-moves)

NFA → DFA

(subset construction)

- The class of regular languages is closed under:
 - Regular ops: union, concatenation, star
 - Also: intersection,
 complementation,
 (& reversal, prefix,
 no-prefix, ...)
- NOT closed under ⊆, ⊇
- Also: Cross-product construction (union, ...)

Applications

- "globbing"
 - lpr *.txt
- pattern-match searching:
 - grep "Ruzzo.*terrific" *.txt

- Compilers:
 - Id ::= letter (letter|digit)*
 - Int ::= digit digit*

 - (but not, e.g. expressions with nested, balanced parens, or variable names matched to declarations)
- Finite state models of circuits, control systems, network protocols, API's, etc., etc.