Debugging tactics for Project 4 and beyond…

· Program seems to Hang

· Program is slower than we’d expect

· Program gives wrong word count

· Program ends up with wrong tree

· I’m concerned that program doesn’t work, but nothing obviously wrong

· Print statements.
· Progress (if program slow/hangs)
· Tree/data structure internal structure
· Follow along
· Spot check
· Random info on what program is doing. Functions called. What case the function is performing (e.g. “performing double rotation”), memory allocations/frees, etc.
· Be sure to flush output, to make sure it appears when it was printed (not buffered, and only printed much later)
· Debugger
· Step through code after writing
· (hang/slow) Run program for a while, break into debugger & see where it is.
· Validating asymptotic running time. Count operations, match to actuals.
· Profiling code. What is it, why is it a black art? OS idle loop story. If lots of time in function:
· Optimize function
· Optimize cache usage
· Make better algorithm (asymptotic)
· What?
· Assertions (automatic error detection)
· Detect bad inputs, NULLs etc.
· Expensive “SanityCheck” functions
· Check any invariant you can think of
· If too expensive – only run occasionally
· Catches many subtle errors
· Create preconditions, post conditions of functions, & validate them.
· You may still miss errors, that tests would catch
· Semi-Formal analysis (also Cleanroom techniques). “Semi-Formal”, since usually full formal proofs aren’t cost effective.
· e.g. NY Daily News replication logic/ debugging Jim’s Map Engine code
· Analyze your code to prove correctness
· Catches many subtle errors
· You can actually prove correct, theoretically
· Promotes better coding, to help you prove correct (if you’re code is very poorly structured, you’ll find it impossible to convince yourself that it’s correct
· Leads to good assertions/sanity checks to make
· Code reviews
· e.g. with your partner
· Even your mom works
· Catches flaws in reasoning you might not get alone
· Books on software engineering
· Accessible & practical:
· MS Press: Writing Solid Code, Code Complete, Rapid Application Development (except the silly insistence about talking about “rapid development” all the time). OO Software Design by Betrand Meyer.
· Designing test cases (black box testing)
· Common cases
· Boundary cases
· Extremes: huge, tiny, sorted input for splay tree…

