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CSE 326, Data Structures, Winter 2001
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March 12, 2001

FINAL EXAM

· This test is CLOSED book.  However, you are allowed one sheet (8.5” x 11”, both sides) of notes to refer to during the exam.

· The blank space left for your answers is proportional to the length of a correct answer.  If you need more space for your answer, use the back of the previous page and indicate that you did so.

· The questions’ weights give you an indication of how much time you are expected to spend on each of them.  There are 100 points, and the exam is 110 minutes long, so spend about 1 minute per point.

· Think carefully before writing down your answers.  Use the back of the pages as scratch paper if you need it.  Don’t spend too much time on any question.  Some questions may be harder for you than other questions.

· This exam has 9 pages.
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1. (20 points, 2 points each) True/False.  Circle True or False below.  You do not need to justify your answers.

a.
If T1(N) = O(f(n)) and T2(N) = O(f(n)), then T1(N) = O(T2(N)). 
           False

b.
Splay trees use AVL tree rotations when executing an insert, but no height information needs to be stored at each node.
True 

c.
A linear congruential generator will produce a sequence of integers that repeats itself.
True 

d.
Building a heap from an array of N items requires ((N log N) time.
           False

e.
Dijkstra’s algorithm for shortest path and Prim’s minimum spanning tree algorithm have the same big-Oh worst case running time.
True 

f.
Both Prim’s and Kruskal’s minimum spanning tree algorithms work correctly if the graph contains negative edge weights.
True 

g.
Deleting an item from an AVL tree might require more than one single or double rotation.
True

h.
For large input sizes, quicksort with random pivot selection will always run faster than insertion sort (on the same input).
           False

i.
For large input sizes, mergesort will always run faster than insertion sort (on the same input).
           False

j.
An N-element array of boolean values (true, false) can be sorted in O(N) time using a constant amount of extra space.
True 

2a. (4 points) Fill in the blank in the following text to make the statement true.

In the union/find data structure of N items, if we use union-by-size without path compression, then any combination of M union and/or find operations takes at most ______O(M log N)___________ time.     (Note the “without path compression”.)

2b. (4 points)  What is the main advantage that open addressing hashing techniques have over separate chaining?

The main advantage of open addressing hashing is that it does not require the extra space for pointers that separate chaining requires.

Advantages of somewhat lesser importance are: slowdown associated with new/delete (some of this can be avoided with cursor implementations) and the implementation of a second data structure (programming annoyance, but not necessarily performance loss).

2c. (6 points) Consider the following erroneous proof that Shellsort runs in ((N2) time in the worst case.  (We know the proof is faulty because Shellsort with Hibbard’s increments runs in O(N3/2) time.)

Claim: Shellsort requires at least ((N2) time to execute in the worst case.

Proof: Shellsort works by choosing a sequence of diminishing increments, with a final increment of 1.  When the increment is 1, Shellsort behaves exactly as insertion sort does.  Since the worst case running time for insertion sort is ((N2), then Shellsort must require at least ((N2) time in the worst case.

Explain why the above proof is faulty.

The passes in Shellsort when the increment is greater than 1 might have altered the array so that insertion sort (in the final pass) runs near its best-case time of O(N).  That is, the worst case input for insertion sort may have nothing to do with the worst case input for Shellsort.  So, the last statement in the proof is false.

3a. (4 points)  Suppose we choose the median of five items as the pivot in quicksort.  If we have an N element array, then we find the median of the elements located at the following positions: left (= 0), right (= N – 1), center (the average of left and right, rounded down), leftOfCenter (the average of left and center, rounded down), and rightOfCenter (the average of right and center, rounded down).  The median of these elements is the pivot.

What is the worst case running time of this version of quicksort?  __O(N2)__________

3b. (6 points)  Kruskal’s minimum spanning tree algorithm uses a heap to quickly find the lowest cost edge not already chosen.  What would be the running time of the algorithm if instead of using a heap, the algorithm used a simple unsorted array to store the edges?

____O(|E|2), where G=(V, E) is the graph.

(The union/find part of the algorithm still takes O(|E| log* |V|) time.)
3c. (6 points)  Suppose we have a comparison-based sorting algorithm on N items that never moves a data item to a position more than  log N  positions away from its

position just before the move.

Give a lower bound on the worst case running time of the algorithm and justify your lower bound.  (Give the best lower bound you can.)

Consider the input with (N/2 + 1) through N in the first N/2 positions in the array, and 1 through N/2 in the last N/2 positions in the array.

Every item in the array must move to a position N/2 positions away from its initial position.  Therefore, the algorithm must do at least

N * (N/ (2 log N) )  = ( ( N2 / log N) moves/assignments.

(The same Big-Omega bound can be obtained if the initial input were reverse sorted, although the math is a little more complicated.)

4. (14 points total)  Consider the following modification to mergesort, called 3-way mergesort.  Instead of dividing the input array into two subarrays, 3-way mergesort divides the array into three subarrays (as equally-sized as possible), sorts them recursively, and then calls a 3-way merge function, which combines three sorted arrays into one sorted array.

a. (2 points)  What is the worst case number of comparisons 3-way merge makes if given as input three arrays, each of size M?

6M – 3.  To do a 3-way merge, you need to find the minimum of three elements (2 comparisons) for each item you place in the output array.  This can happen for 3M – 3 items.  The last three items take 3 more comparisons, for a total of 2*(3M – 3) + 3 = 6M –3.

There’s actually a way to do this in about 5M comparisons: merge two of the arrays in the usual way and then merge the array of size 2M with the other array (of size M).  This takes 5M comparisons, but it does more assignments.

b. (4 points)  Write a recurrence relation T(N) that expresses the worst case number of comparisons used in 3-way mergesort given an array of N elements as input.  (We can assume that T(1) = 1.)

T(N) = 3 T(N/3) + (2N – 1)

c. (4 points)  Solve the recurrence relation.  Show your work (either on this page or on the back of the previous page — if you use the previous page, indicate you did so).

Either telescoping or brute force works.  Here’s brute force:

T(N) = 3T(N/3) + (2N – 1).

T(N/3) = 3 T(N/9) + (2N/3 – 1)

Substituting, we get

T(N) = 9 T(N/9) + (2N – 1) + (2N – 1)

The general form is:

T(N) = 3k T(N/3k) + k * (2N – 1)

Let k = log3 N.

T(N) = N * T(1) + (log3 N) * (2N – 1)

          = 2 N log3 N + N – log3 N

d. (4 points)  For large input sizes (but small enough to fit in main memory), do you think 3-way mergesort would run faster in practice than (2-way) mergesort?  Why?

No.  3-way mergesort does 2 N log3 N, or about 1.3 N log2 N, comparisons, whereas 2-way mergesort only does N log2 N.  However, let’s look at the number of assignments (copying of data) each does:

3-way: 2 N log3 N  (or about 1.26 N log2 N).  2-way: 2 N log2 N

So, on the surface, it’s not clear which is better.  However, note that the actual work associated with each comparison in 3-way mergesort is more complicated (keep track of three indexes, detecting whether any of the three arrays is done) than in 2-way.  The work associated with each assignment is roughly the same in both cases.

5. (12 points)  Macroslosh’s initial release of Windbag 2001 had a few bugs.  So, President and CEO Gill Bates has decided to release a patch.  In addition to fixing all the bugs in the initial release, the patch also has improvements for a variety of operations.

Bates has stated publicly that the way the new code is able to execute more quickly is through the use of a data structure that supports the push and pop operations and a third operation called findMin, which returns (without removing) the smallest element in the data structure.  All of the operations can be done in O(1) worst case time.

Explain how the data structure might be organized and how each of the three operations (push, pop, findMin) work.

The data structure looks and works like a normal stack (call it normalStack), except there is another stack (call it minStack) that keeps track of the current minimum value.

On a push, we do a push on the normalStack.  If the value is less than or equal to the value on the top of minStack, then we push the item on minStack also.

On a pop, we do a pop on the normalStack.  If the top of minStack has the same value as the item just popped, then we pop minStack.

findMin just returns the top of minStack.

(Another solution involves a minStack that is a stack of pointers to elements in normalStack.  In this case, we need only push onto minStack when the value being pushed is strictly less than the value of the item pointed to by the top of minStack.  When we pop, we only pop minStack if its pointer at the top of minStack points to the item being popped.)

6. (10 points)  The Quicksearch Center is hired to design a data structure for storing 10,000 names.  The client informs the Center that one-quarter of the names will account for three-quarters of the successful searches, and the remaining three-quarters of the names will account for only one-quarter of the successful searches.  (There will also be searches for names not in the data structure at all.)

Proposal 1: Store all 10,000 names in an open addressed hash table of size 12,000 using double hashing.

Proposal 2: Store the 2500 high frequency names in a hash table of size 3000 and store the 7500 low frequency names in a hash table of size 9000.  Both tables use open addressing with double hashing.  The algorithm to find an item is to look in the high frequency table first.  If the item is not there, look in the low frequency table.

Recall that the performance of double hashing can be approximated by the random collision resolution model.  For the random collision model, the number of probes during insertions and unsuccessful searches is 1/(1 ( ().  During successful searches, the number of probes is (loge (1 / (1 ( ())) / (.

Note: loge 6 = 1.79 (approximately).

Which proposal do you believe will lead to better performance?  Justify your answer by comparing the time it takes for doing successful and unsuccessful searches.

Note that the load for all hash tables in this problem is 5/6.

Proposal 1:

  Successful search (S1): (6/5) * 1.79 , which is about 2.15.

  Unsuccessful search (U1): 1/ (1((5/6)) = 6.

Proposal 2:

  Successful search (S2):

    (prob. of finding in the high freq. table)*(# probes in that case) +

    (prob. of finding in the low freq. table)*(# probes in that case) =

    0.75 * 2.15 + 0.25 * (6 + 2.15) = 3.65.      (Note the “6 + 2.15”.)

  Unsuccessful search (U2):  6 + 6 = 12.   (couldn’t find in high freq table and couldn’t find it in the low freq. table)

In both successful and unsuccessful searches, Proposal 1 requires fewer probes.

Note that we don’t need to know what the ratio is between successful and unsuccessful searches.  Note also that it does not matter how frequent the high frequency names are searched.  (Since the loads for all the tables are the same, notice how the calculation for successful search in Proposal 2 always is of the form    S2 = p * S1 + (1(p) * (U1 + S1) ( S1.

(p is the probability that a successful search is for a high frequency name.)

For unsuccessful searches, U2 = 2 * U1.

7. (14 points total)  A spreadsheet is a two-dimensional array of cells.  In a simple spreadsheet, each cell may be empty or it may consist of a formula.  A formula is either an integer or an expression of the form x op y, where x and y are references to cells and op can be one of {+, (, *, /} (corresponding to the integer operators in C++).

The value of a cell is:

0
, if the cell is empty;

x
, if the cell’s formula is the integer x;

V(x) op V(y)
, if the cell is an expression x op y, where V(x) and V(y) are the values of cells x and y, respectively.

Columns of the spreadsheet are indexed by letters, and rows are indexed by positive integers.  Cells are reference by their (column, row) pair.  For example, the upper left cell in a spreadsheet is A1.

Here are the formulas for a sample 3 x 4 spreadsheet:


A
B
C
D

1
4

5
B3+C1

2
5
A1 * C1

3

3
B2+A1
2
A3(D2


And the corresponding values for each cell:


A
B
C
D

1
4
0
5
7

2
5
20
0
3

3
24
2
21
0

(Please read all three parts of this problem before beginning any of them.)

a. (6 points)  Describe an efficient algorithm that computes the values of all cells in a spreadsheet, if such a computation is possible.

1. Construct a directed graph G = (V, E) from the spreadsheet.

Vertices are the cells in the spreadsheet (one vertex per cell).

If v and w are vertices, the edge (v, w) is in E if the cell w contains a reference to cell v.

(Each vertex has a value and a flag indicating whether that value is valid.)

2. Run topological sort on G.

3. Compute the values of each vertex in V in topological order.  We are guaranteed that when a vertex’s value is computed, all of its dependencies (if any) have already been computed.`  (Steps 2 and 3 can be merged into one step.)

(Another solution involves constructing the same graph as above, except that the direction of all edges are reversed.  Then post-order traversal (that is, depth first search) will compute the value of all vertices efficiently.)

b. (4 points)  What is the worst case running time your algorithm on an N-row, M-column spreadsheet?

O(NM).  Each of the three steps in the algorithm above takes O(|V| + |E|) time.  In our case, |V| = NM, and since each vertex has at most two incoming edges, |E| <= 2 * NM.

c. (4 points)  Under what circumstances is it impossible to compute the values of all the cells in the spreadsheet?

It is impossible to compute all values in the spreadsheet if there is a cycle in G.  (The topological sort algorithm will detect whether there is a cycle.  Depth-first search can also detect whether there is a cycle in G.)

(0 points, OPTIONAL — do this only if you have some extra time):

What was the single best thing about this course this quarter?

The students.

What was the single worst thing about this course this quarter?

Grading.


























































