8: Splay Trees

CSE326 Spring 2002

April 16, 2002

Move-to-Front Heuristic ———

Search for Pebbles:

- Move found item to front of list
- Frequently searched items will move to start of list
 - Effective both theoretically and practically

UW CSE326 Sp '02: 8—Splay Trees

Splaying —

Splay(12)

Move-To-Front for Trees

UW CSE326 Sp '02: 8—Splay Trees

- All Dressed Up ----

 ${\rm Splay}(k) \ \ {\rm Splay} \ k, \ {\rm or} \ {\rm predecessor} \ {\rm or} \ {\rm successor} \ {\rm to} \ k, \ {\rm to} \ {\rm root}, \\ {\rm depending} \ {\rm if} \ k \ {\rm is} \ {\rm in} \ {\rm the} \ {\rm tree}.$

Insert(k) Splay(k), then update

 $\mathsf{Delete}(k)$ $\mathsf{Splay}(k)$, if root is k, then remove it, and $\mathsf{Concat}(A,B)$

UW CSE326 Sp '02: 8—Splay Trees

Concatenation ——

Concat (T_1, T_2) : Splay $(+\infty, T_1)$, then join T_2 as right child of T_1 .

UW CSE326 Sp '02: 8—Splay Trees

Example ———

UW CSE326 Sp '02: 8—Splay Trees

Amortized Analysis ———

- Splaying is the expensive operation
- \bullet Sometimes we do more than $O(\log n)$ work per node. . .
- Sometimes we do *less* than $O(\log n)$ work per node. . .
- But it balances out: m operations in a tree with at most n nodes takes $O(m \log n)$ time!
- Easy to say, harder to prove

UW CSE326 Sp '02: 8—Splay Trees

Worst-Case Analysis ———

 $\mathsf{Time} = \mathsf{Money}$

We proved we needed to spend at most $\log n + 4$ time per AVL insertion

- Worst-Case Analysis ----

If the insertion was easy, our analysis loses

UW CSE326 Sp '02: 8—Splay Trees

– Amortized Analysis —

If the splay was easy, bank the left-over money

UW CSE326 Sp '02: 8—Splay Trees

Amortized Analysis

If the splay was hard, $\ensuremath{\textit{use}}$ money from the bank

17

- Amortized Analysis -----

- Always $invest \ 3\lfloor \log n \rfloor + 1 \ \mathrm{per}$ splay
- Prove there's *always* enough money in the bank for any operation
- Then $O(m \log n)$ time to do m operations

UW CSE326 Sp '02: 8—Splay Trees

18

- 19

Store Money in the Tree

 $r(v) = \lfloor \log \operatorname{size} \operatorname{of} \operatorname{subtree} \operatorname{at} v \rfloor$

UW CSE326 Sp '02: 8—Splay Trees

Ranks are Logarithms ———

Rank of parent at least that of any child, but sometimes not greater.

If both children have same rank, than rank of parent is larger $\,$

UW CSE326 Sp '02: 8—Splay Trees

21

The Money Invariant ———

- ullet Each node v has r(v) dollars
- $\bullet \ \, \text{If} \ \ \, v \ \, \text{moves} \ \ \, up, \ \ \, add \ \, \text{more} \\ \text{money to} \, \, v \\$

 $\bullet \ \ \text{If} \ v \ \ \text{moves} \ \ \frac{\textit{down, take}}{\textit{money}} \\ \text{from} \ \ v \\$

UW CSE326 Sp '02: 8—Splay Trees

The Cost of Splaying: I ———

- Always the last step
- Only ranks of P and Q change
- r'(P) = r(Q)
- Get r(P) dollars
- Need $r'(Q) \le r'(P)$ dollars
- Need \$1 to do the rotation
- Total: $\leq r'(P) r(P) + 1$

23

- 22

The Cost of Splaying: II ———

- Need r'(Q) + r'(R) - (r(P) + r(Q)) $\leq \ 2(r'(P) - r(P))$
- If r'(P) > r(P), then 3(r'(P) r(P)) is enough to pay for the rotation, too
- Otherwise, r'(P) = r(P), so do we need \$1 to pay for the rotation?

UW CSE326 Sp '02: 8—Splay Trees

- 24

The Cost of Splaying —

- If we pay \$1 for each case II, could pay $\Theta(n)$, and we need $O(\log n)$
- If cost only depends on rank difference, we'll be okay:

$$\begin{array}{l} 3(r^{(1)}(P) - r(P)) \\ + \ 3(r^{(2)}(P) - r^{(1)}(P)) \\ + \ 3(r^{(3)}(P) - r^{(2)}(P)) \\ \vdots \\ + \ 3(r^{(k)}(P) - r^{(k-1)}(P)) + 1 \\ = \ 3(r^{(k)}(P) - r(P)) + 1 \\ \le \ 3\lfloor \log n \rfloor + 1 \end{array}$$

UW CSE326 Sp '02: 8—Splay Trees

25

The Cost of Splaying: II ——

- If r'(P) = r(P), then
 - $\star \ r'(R) < r(P)$ Otherwise r'(P) > r(P)
 - $\star \ r'(Q) \le r'(P) = r(P) \le r(Q)$
 - \star R's $\$ \Rightarrow$ P
 - \star P's \$ \Rightarrow R, with extra to pay for rotation

The Cost of Splaying: III —

- R's \$ ⇒ new P
- Q's \$ stays put (may waste some)
- P's $\$ \Rightarrow$ new R, and pay r'(P) r(P) extra \$s
- • If r'(P) > r(P), we're within 3(r'(P) - r(P)) after paying for rotation
- If r'(P) = r(P), then
 - $\star \ r'(P) = r(P) = r(Q) = r(R)$
 - $\star \ \, \text{Hence} \,\, r'(Q) < r'(P) \,\, \text{or} \\ r'(R) < r'(P), \,\, \text{otherwise} \\ r'(P) > r(P)$
 - \star So r'(Q) < r(Q) or r'(R) < r(P), and can use extra $\$ to pay for rotation

UW CSE326 Sp '02: 8—Splay Trees

- 27

So What Does It All Mean? —

If we perform m operations an have at most n nodes:

- $Any \operatorname{Splay}(K)$ needs at most $3\lfloor \log n \rfloor + 1 \$$ to maintain money invariant
- Any lookup or delete performs at most 2 splays: at most $(6 \lfloor \log n \rfloor + 2)$
- Any insert performs 1 splay, plus money for the new root: at most $\{4 \lfloor \log n \rfloor\}$
- ullet O($m \log n$) dollars total needed—matches AVL trees!

UW CSE326 Sp '02: 8—Splay Trees

28