8: Splay Trees
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Move-to-Front Heuristic

Search for Pebbles:

| e

e Move found item to front of list

e Frequently searched items will move to start of list

— Effective both theoretically and practically
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Splaying
Splay(12)
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Move-To-Front for Trees
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Gettin’ Down: Step 1

Splay(12)

Remember the path to the node
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Know Who Begot You

Splay(12)
—
1
e
5 7 Grandparent
S
3 10 <— Parent
~ ~
4 8 12
~
9

Look at Parent and Grandparent
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Splay Case 1
Splay(12)
P P P
1 1
e I e I e
5 7 5 10 5 12
10 7 i 3 10
4 g a4y 4 7
~ . ~
9 9 8_
9

Rotate Left 7, Rotate Left 10

UW CSE326 Sp '02: 8—Splay Trees




Splay Case 2

Splay(12)
N J— R
1 13 1 13 1 12
6 — o — 6 i3
SN e RS
5 12 6 5 10
~ ~ T — =
3 10 5 10 3 7
~ = e ~ ~~
47 3 7 4 8
~ ~ ~ N
8 4 g 9
~ ~
9 9
Rotate Left 6, Rotate Left 13
- 6
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Splay Case 3
Splay(12)
2 12
—_— ———
1 12 /2\ 13
6 13— 1 6
RS RS
5 10 5 10
~ ~ — =
3 7 3 7
4 g 4 g
~ ~
9 9
Rotate Left 2
7
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Splay Cases
Q P R
P Q Q
P
Case I A A

s
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All Dressed Up

Splay(k) Splay k, or predecessor or successor to k, to root,
depending if k£ is in the tree.

Insert(k) Splay(k), then update

A=KD=E N

Delete(k) Splay(k), if root is k, then remove it, and Concat(A4, B)

A~ A0 A=A

UW CSE326 Sp '02: 8—Splay Trees

Concatenation

A=

T <T>

Concat(Ty,T%): Splay(4o0,T1), then join T5 as right child of Ty.
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Example
+2 +3 +4 +0
1 — — 3 — 4  — 4 1 0
A
1 2 2, 2 A
1 3 3 2\
3
splay
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Generalize the Example

1 — — 3 —=--» n - 1 — 0

/2 / /" splay(0) \ +0 \
1 /2 n—1 n 1

1 / \

n—2 n

AN /

/3 “n—1 n—2

Ve 2 AN

1 Sn—1
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Amortized Analysis

e Splaying is the expensive operation

e Sometimes we do more than O(logn) work per node. ..

e Sometimes we do less than O(logn) work per node. ..

e But it balances out: m operations in a tree with at most n
nodes takes O(mlogn) time!

e Easy to say, harder to prove
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Worst-Case Analysis

Time = Money

logn + 4

e o & “.J

We proved we needed to spend at most logn + 4 time per AVL insertion
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Worst-Case Analysis

/iﬂ\o Egﬂ logn + 4

If the insertion was easy, our analysis loses
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Amortized Analysis
3llogn] +1
If the splay was easy, bank the left-over money
16
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Amortized Analysis
If the splay was hard, use money from the bank
17
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Amortized Analysis

e Always invest 3|logn]| 4+ 1 per

splay

eration

operations

e Prove there's always enough
money in the bank for any op-

e Then O(mlogn) time to dom
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Store Money in the Tree
™ -;; =Y
\\' r(v) dollars
r(u) dollars
r(v) = |logsize of subtree at v]
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Ranks are Logarithms
o)
Rank of parent at least that of any child,
but sometimes not greater.
16 nodes
20
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Ranks are Logarithms

If both children have same rank, than rank
of parent is larger

21
UW CSE326 Sp '02: 8—Splay Trees

The Money Invariant

e Each node v has r(v) dollars
e If v moves up, add more
money to v
r'(v) > r(v)
e If v moves down, take money
from v
r'(v) < r(v)
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The Cost of Splaying: 1
Q
$% % e Always the last step
$
e Only ranks of P and Q change
o (P)=7(Q)
* e Get r(P) dollars
P e Need r'(Q) < 7/(P) dollars
Qg 5%
e Need $1 to do the rotation
e Total: <r'(P)—r(P)+1
23
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The Cost of Splaying: II

R
$$ Q
$ p
A
+ o Need Q)+ 7'(R) — (r(P) +r(Q))

< 20/(P)—r(P))

o If #/(P) > #(P), then 3(+'(P) —r(P)) is
enough to pay for the rotation, too

P
qQ
R
e Otherwise, r'(P) = r(P), so do we
|! |! need $1 to pay for the rotation?
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The Cost of Splaying

e If we pay $1 for each case II,
could pay ©(n), and we need
O(logn)

e If cost only depends on rank
difference, we'll be okay:

3(r(P) = r(P))
3(r@(P) = r(P))
3(r(P) = rP(P))

3OP) - 14D+
3(rM(P) —r(P)) +1
3llogn] +1

N+ ++

25
UW CSE326 Sp '02: 8—Splay Trees

The Cost of Splaying: II

e If v'(P) = r(P), then
* r'(R) < r(P)

/Q\
R P Otherwise r'(P) > r(P)
* 7(Q) < r'(P)=r(P) <r(Q)
* Rs$ =P

* P's $ = R, with extra to pay for
P rotation

R $

A K .
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The Cost of Splaying: III
e R's$ = new P

e Q's $ stays put

(may waste some)

e P's $ = new R, and pay 7'(P) — r(P)
extra $s

If 7(P) > r(P), we're within
3(r'(P) — r(P) after paying for

-

rotation
P
e e If v/(P) = r(P), then
R

5 7(P) = 1(P) = 1(@) = r(R)

$
A A A A * Hence r'(Q) < r/(P) or
r'(R) < r'(P), otherwise
r'(P) > r(P)

* So r(Q) < r(Q) or r(R) < r(P),
and can use extra $ to pay for
rotation
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So What Does It All Mean?
If we perform m operations an have at most n nodes:
e Any Splay(K) needs at most 3|logn| + 1 $ to maintain
money invariant
e Any lookup or delete performs at most 2 splays: at most
$(6[logn] +2)
e Any insert performs 1 splay, plus money for the new root:
at most $(4|logn])
e O(mlogn) dollars total needed—matches AVL trees!
28
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