Unix Tutorial Slides

CSE 326 Quiz Section
April 4, 2002

With much thanks to the UW ACM

IWS (Instructional Work Servers)

* Thereare4ingructional Unix servers:
— ceylon,fiji,sumatra,andtahiti
» Accessing the servers:
— Terminal Programs:
« telnet (insecure; cannot be used)
« ssh(viathe TeraTerm or Putty programs from Windows)
— Start - > Program Files - > Desktop Tools - > TeraTerm
— File Transfer Programs
« ftp (insecure; cannot be used)
* \\<server name>\<usernanme> from Start -> Run menu
—eg--\\fiji\zanfur
« Secure file transfer (from C&C)
— Xwindows
« Runxgo from the command prompt

« Cometothe ACM tutorial! Thistutorial provided by UW ACM

http://www.cs.washington.edu/orgs/acm/
Questions to jdeibel @cs, hetang@cs, zanfur@cs, awong@cs

Logging In

« Which server you use (amost) doesn’t matter — all four
allow accessto your files
« Although your Windows and Unix usernames (and
passwords) are the same, they are two separate
accounts
— Your z: drive is not your Unix account
« Connecting:
— WEe'll connect to the Unix machines via ssh
— After connection, you are presented with alogin prompt
— After logging in, you're placed in your home directory
(where your persond files are located)

Setting Up Your Environment

« To set up your Unix environment, follow the
setup instructions on the first programming
project

 To get the full benefit of / uns, you can run the
/ uns/ exanpl es/ set up-tutorial script

* It'sagood ideato look at what'sin/ uns/ bi n —
there are many useful tools there;

— Xenmacs
- ddd
— And much, much more ...

The Command Prompt

« Commands are the way to “do things” in Unix

* A command consists of acommand name and options called
“flags’

« Commands are typed a the command prompt

* InUnix, everything (including commands) is case-sensitive

‘[prorrpt]$ <conmand> <fl ags> <args> ‘

fiji:/ul5/awong$ |'s —I -a unix-tutorial

/ ARV,
Command (Optional) arguments

Command Prompt .
(Optional) flags

Note: In Unix, you're expected to know what you're doing. Many
commands will print a message only if something went wrong.

Two Essential Commands

* The most useful commands you' |l ever learn:
- man (short for “manual”)
—info
» They help you find information about other commands

— man <cnd> Or i nfo <cnd> retrieves detailed information
about <crdl>

— man —k <keyword> searches the man page summaries
(faster, and will probably give better results)

— man —K <keywor d> searches the full text of the man pages

fiji:/ul5/ awong$ man -k password
passwd (5) - password file
x| ock (1) - Locks the local X display

until a password is entered
fiji:/uls5/awong$ passwd

Directories

In Unix, files are grouped together in other files called
directories, which are analogous to folders in Windows
Directory paths are separated by aforward slash: /

— Example: / u10/j dei bel / ¢l asses/ cse326

The hierarchical structure of directories (the directory
tree) begins at a specia directory called the root, or /
— Absolute paths start at /
« Example: / u10/ j dei bel / cl asses/ cse326
— Relative paths start in the current directory
« Example: cl asses/ cse326 (if you'recurrently in/ ul0/j dei bel)
* Your homedirectory is where your personal files are
located, and where you start when you log in.
— Example: / u10/j dei bel

Directories (cont’'d)

 Handy directories to know
~ Your home directory
The parent directory
The current directory
els
— LiSts the contents of a specified files or directories
(or the current directory if no files are specified)
—Syntax:ls [<file> ...]
— Example: | s backups
. pv\d
— Print Working Directory

Directories (cont’'d further)

* cd
— Change Directory (or your home directory if unspecified)
— Syntax: cd <directory>
— Examples:
« cd backups/unix-tutorial
«cd ../class-notes
e nkdir
— MaKe DI Rectory
— Syntax: mkdi r <directories>
— Example: nkdi r backups cl ass-notes
e rndir
— ReMove DIRectory, which must be empty
— Syntax: rndi r <directori es>
— Example: rndir backups cl ass-notes

Files

« Unlike Windows, in Unix file types (e.g. “ executable
files, ” “datafiles,” “text files’) are not determined by
file extension (e.g. “foo.exe”, “foo.dat”, “foo.txt")

* Thus, the file-manipulation commands are few and
simple ...

erm
— ReMoves afile, without a possibility of “ undelete!”
— Syntax:rm <file(s)>
— Exampleerm tutorial.txt backups/old.txt

Files (cont’d)

. Cp

— CoPiesafile, preserving the original

— Syntax: cp <sour ces> <desti nation>

— Example:cp tutorial.txt tutorial.txt.bak
Y

— MoVes or renames afile, destroying the original
— Syntax: mv <sour ces> <desti nation>
— Examples:
env tutorial.txt tutorial.txt.bak
enmv tutorial.txt tutorial-slides.ppt backups/

Note: Both of these commands will over-write existing files
without warning you!

Shell Shortcuts

* Tabcompletion
— Type part of afile/directory name, hit <t ab>, and the shell will finish as
much of the name as it can
— Worksif you'rerunning t csh or bash
» Command history

— Don't re-type previous commands — use the up-arrow to access them
* Wildcards
— Special character(s) which can be expanded to match other file/directory
names
* Zero or more characters
? Zero or one character
— Examples:
e ls *. txt
* rm may- ?-notes. txt

Text - editing

* Which text editor is“the best” isaholy war. Pick one and
get comfortable with it.

¢ Threetext editors you should be aware of:
— pi co — Comeswith pi ne (Dant e’semail program)
— emacs/ xemacs — A heavily-featured editor commonly
used in programming (326 staff recommends this one)
—vim vi —A lighter editor, also used in programming
» Get familiar with one as soon as possible!

Text - printing

e Printing:
— Usel pr to print
* Use—h (no header) and —Zdupl ex (double-sided) to save paper
— Check the print queue (including Windows print jobs!) with | pq
— | pr m to remove print jobs (including Windows print jobs)

— For the above commands, you' |l need to specify the printer with
—P<printer name>

» Check outenscri pt (quizlet: how do you find information about
commands?) to print text files nicely!

— WARNING: Do NOT useenscr i pt with postscript files!

Unix 1/O

* Input:

— stdin: usually inputted through the keyboard, it is
equivalenttoci n in C++
« Output:

— stdout: usually sent to the monitor, it is equivalent to
cout inC++

— stderr: usually sent to the monitor, it is equivalent to
cerr inC++.

NOTE: It is good programming practice to usecer r
for error messages instead of cout .

Redirecting I/O

« Redirecting input: a.out <file
— aout will read from the file using stdin (cin).

— Thisisasif the user was typing the contents of the file as
input.

* Redirecting output: a.out > file
— a.out will write any output from stdout to file.

— Thefilewill be created if it does not already exist and
overwritten otherwise.

— Messages from stderr will not be written to the file.
* Piping: cmdl | cmd2

— cause the stdout output of cmd1 to be sent as stdin input to
cmd2

The Unix Philosophy

* A large set of primitive tools, which can be put
together in an infinite number of powerful ways
* Anexample:
— Three separate tool s are necessary to devel op software:
« Text editor
« Compiler
« Debugger (You will need this, unless“j00 R I33t")
— MSVCisan“IDE" (“Integrated Development Environment”)
« All threetools are found in one shrink-wrapped box
— Although there are IDE’ s for Unix, for this course, you will
most likely use (mostly) separate tools:
« Texteditor: emacs/ xemacsorvi/vim
« Compiler: g++

. . This tutorial provided by UW ACM
Debugger: gdb http:/www.cswashington.edu/orgslacm/

Questions to jdeibel @cs

Compilation with g++ 3.0

* There are actualy three g++sinstalled on the
instructional machines
—Version 3.0.4 isthe one we'll be using for 326
—Version 2.96 is the default

« To use the most current version, you need to call
uns- g++

 uns- g++ islocated in /uns/bin, which is not part
of your standard Unix environment

* After running the course-setup script, g++ will
default to uns- g++

Compilation

« To compile aprogram:
— g++ <options> <source files>
— Recommended: g++ -Wal| —ansi -g —o <executabl e_name> *.cpp
e -Vl | —Warnings: ALL
* -ansi —Strict ANSI compliance
« - g —Add debugging symbols to the executable (ie, make it debuggable!)
* Quizlet: what does* . cpp mean?
* What'san “executable” ?
— In Windows, double-clicking on an icon runs a program
« E.g. double-click on C: \ W ndows\ not epad. exe
— In'Unix, you can run your executable from the command line!
* Type the executable name at the prompt, just like acommand
— Infact, commands are actually executables
« However, you may need to specify the path to your executables
— ./ <progran® runs<progran® inthecurrent directory

» Example:
fiji:ehsu% g++ -Wall -ansi -g —o hello hello.cpp
fiii-ehsyo% /hello

“Compilation” or “The Big Lie”

Doesthis picture look familiar?
These are the discrete stepsto
program “compilation”

Hitting the *!" button in MSVC or
typing a

“g++ *. cpp” to build (not
“compil€”) your program hides all
these separate steps.

Question: would you want to do
this entire process (ie, pre-process
and compile every file) every time
you wanted to generate a new
executable?

Selective Recompilation and Makefiles

* Answer:

— No. You only want to compile those files which were
changed (or were affected by a change in another file [quizlet:
when might this happen?]). We can reuse the .0/.obj files for
files which weren’t modified.

* You could do this yourself...

— g++ <options> <changed files>

- g+t *.0

But you could also use the make command and a

Makefi | e!

— Create aMakef i | e to keep track of file dependancies and
build options

— The make command will read the Makef i | e and compile (not
build) those files which have dependancies on modified files!

Makefile Syntax

* Makefiles consists of variables and rules.
* Rule Syntax:
<target>: <requirenments>
<conmmand>
« The<r equi rement s> may be files and/or other targets
« Theremust be atab (not spaces) before <conmand>
« Thefirst rulein aMakef i | e isthe default <t ar get > for make

* Variable Syntax:
<vari abl e>=<string val ue>
« All variable values default to the shell variable values
* Example:
— BUILD_FLAGS =-Wall -g -ansi

Example Makefile

Exanple Makefile
CXX=/ uns/ bi n/ uns- g++
CXXOPTS=-g -Wall -ansi - DDEBUG

foobar: foo.o bar.o
$(CXX) $(CXXOPTS) —o foobar foo.o bar.o

foo.o0: foo.cc foo.hh
$(CXX) $(CXXOPTS) —c foo.cc

bar.o: bar.cc bar.hh
$(CXX) $(CXXOPTS) —c bar.cc

cl ean:
rm-f core foobar *.0 *~

Writing Code

* What causes abug?
— What you meant != what you wrote
* Coding right thefirst time is making “what you meant”
aign with “what you write’
— Invariants—assert () invariantsto discover when your
program’ s state has changed unexpectedly
— Error handling and notification — Fix or report errors. Y our
program should never be in a bad state
— Code review

— Use adebugger!
* Seenext dide....

Debugging

« How do you remove a bug?
— Read the code. If you don’t understand it, the bug will happen again
— Examine the state of the program at key pointsin the code

+ Print statements in the code (suggestion: wrap debug output with
#i fdef DEBUG)

« Useadebugger to view the state of your program with greater
flexibility/control
« Debugger advantages
— Compile your code only once
— Monitor all the valuesin the code
— Make changes while executing the code
— Examine core files that are produced when a program crashes
« In other words, debuggers are tools which allow you to examine
the state of aprogram in detail!

— Infact, debuggers can (and should) be used to understand and improve
your code

Debugging Techniques

» Goal: Isolate the problem, then fix it
— Don’t try random things, looking for a solution
« If you don't understand it, it'll be back
« This method takes along time
« You don’t learn anything from it
— Look for the problem, not the solution

« Figure out two pointsin code that the problem is between,
and close the gap from there.

GDB - The GNU DeBugger

* Torungdb (atext-based debugger):

— gdb [<program file> [<core file>]]

« <program file> Executable program file
« <core file> Crashed program’s core dump

— You must compile with - g for debug information!

* Within gdb:

— Running gdb:
« run [<args>] Run program with arguments <ar gs>
« quit Quit the gdb debugger
« help [<topic>] Access gdb’sinternal help

— Examining program state:
« info [local s|args] Printsoutinfoon[local variableslargs]
« backtrace[<n>] Printsthetop <n> frames on the stack
* plrint] <expr> Print out <expr >

GDB continued

— Controlling program flow

e s[tep] Step one line, entering called functions

« n[ext] Step one line, skipping called functions

« finish Finish the current function and print the return value
— Controlling program flow with breakpoints

- c[ontinue] Continue execution (after astop)

« b[reak] [<where>] Set abreakpoint

« dlelete] [<nuns>] Deletes breakpoints by number

e [r]watch <expr> Sets awatchpoint, which will break

when <expr > iswritten to [or read]

— Modifying program state

« set <name> <expr> Set avariableto <expr>

e junp <where> Resume program execution at <wher e>

DDD — A Graphical Debugger

* Built-over GDB
« Easier-to-use point and click interface
e Torun DDD:

— ddd [<programfile> [<core file>]]

« DDD isnot standard, but is accessible through
uns and through the course-setup.

* Nifty Tutorial available at:
http://heather.cs.ucdavis.edu/~matl of f/ Debug/Debug.pdf

Other Tools for CSE 326

* Shell scripts
— A series of shell commands which are read and
executed by the shell (like a DOS batch script).
— “Shell commands” may be:
« Executables such asemacs and ti e
« Built-in primitives such as| s and for-loops
— Search the internet for tutorials or sample shell
scripts
« “tcsh builtin commands’ worked well at Google ...

Other Tools for CSE 326 (part 2)

* Awk

— A pattern scanning and processing utility. It searches
file(s) for specified patterns and perform associated
actions.

— Search the internet for tutorials or samples

« “awk tutorial” worked well at Google ...
e Gnuplot

— A command-driven function and data plotting

program

— Try emailing the course alias with websites you
found; your classmates will thank you!

More Information - In the Dept

¢ In the department
— Your neighbors!
— infoandmn
— uw-cs. | ab- hel p newsgroup

— .l ogin,.cshrc,and/uns/ exanpl es to see how other
people have things set up
— Course staff - office hours, email
« Why do you think we get paid the big bucks? =)

More Information - On the Web
¢ On the web:

— http://ww. fags. org (conp. uni x questions FAQ)
— http://ww. googl e. com

— http://ww.refcards.com

— ACM Tutoridls:

htt p:// www. cs. washi ngt on. edu/ orgs/acm tutori al s/

— CSE326 webpage

htt p:// www. cs. washi ngt on. edu/ educat i on/ cour ses/
cse326/ 02wi / conput i ng/ cl ass_l i nks. ht m

« If you're curious, check out these topics:
— Source control (try searching the web for “cvs’)
« Multiple people working on afile concurrently
« Easily revert file changes
— Profiling (try searching the web for “gprof”)
« Find and eliminate inefficiencies in code

