Digoint Set Union Find
or
How | Learned to Stop Linking
and Love the Array

A poorly named rehash of a
Winter 2002 |ecture

Nick Deibel

Nifty storage trick

A forest of up-trees

can easily be stored
inan array. e (Dé) @g
Also, if the node
names are integers 0 0
Ol |

or characters, we
can use avery
simple, perfect hash.

0(a) 1(b) 2(c) 3(d) 4(e) 5(f) 6(a) 7 (h) 8()
up-index: -1‘0‘-1‘ O‘ 1‘2 -1‘-1‘ 7‘

Implementation

typedef 1D int;

I'D up[100007 ; I D uni on(Chj ect x, Object y)

1D find(Chject x) {)

ID rootx = find(x);

t 1D ty = find(y);
assert (HashTabl e. contai ns(x)); rooty = - y)i .
ID xID = HashTabl e[x] ; assertgro?lx I'= rooty);
while(up[xID] !=-1) { urlyl = x;

xID = up[xID; }
}
return xID;
}
runtime: O(depth) runtime: O(1)

Room for Improvement:
Weighted Union

» Always makes the root of the larger tree the new root
« Often cuts down on height of the new up-tree

5

Weighted union!

Could we do a
better job on this union?

Weighted Union Code

typedef 1D int;

I D uni on(Chj ect x, Object y) {

rx = Find(x);

ry = Find(y);

assert(rx !'=ry);

if (weight[rx] > weight[ry]) { : i o
wplryl = rx; new runtime of union:
wei ght[rx] += weight[ry]; o)

}

else {
\l:in[;’;1 (r:y]'yir: wel ght [1x]: new runtime of find:

} O(depth)

}

Weighted Union Find Analysis

 Finds with weighted union are O(max up-tree height)
 But, an up-tree of height h with weighted union must have at
least 2" nodes

Base case: h = 0, tree has 2° = 1 node

Induction hypothesis: assume true for h < '

and consider the sequence of unions.

Case 1: Union does not increase max height.

e Resulting tree still has> 2" nodes.

o o, 2maxheidt<nand | case2: Union has height b= 1+h, whereh =
max height <logn :eighth of each (;f the i;put tg:cjs Ode induc:]ion

. ypothesis each tree has> 21 nodes, so the

* So, find takes O(10g N) | nerged tree hasat least 2 nodes. QED.

Room for Improvement:
Path Compression

« Points everything aong the path of afind to the root
» Reduces the height of the entire access path to 1

Path Compression Example

find(e)

OO
@e

@@@@@

Whilewe're finding e,

ession!
could we do anything else? Path compressi on:

Path Compression Code

ID find(Object x) {
assert (HashTabl e. cont ai ns(x));
I D xI D = HashTabl e[x] ;

ID hold = xID;
while(up[xID] !'=-1) {
xID = up[xID];

}

while(up[hold] = -1) {

tenp = up[hold];
up[hold] = xID;
hold = tenp;

}

return xID;

runtime: O(log n)

Digression: Inverse Ackermann’s

Letlog® n=log(log (log ... (log n)))
~~

klogs

Then, let log* n = minimum k such that logk) n< 1
How fast doeslog” n grow?

log (2)=1

log' (4) =2

log" (16) =3

log* (65536) = 4

log" (2655%) =5 (a20,000 digit number!)

log (2265536) -6

Complex Complexity of
Weighted Union + Path Compression

» Tarjan (1984) proved that m weighted union and
find operations with path commpression on a set
of n elements have worst case complexity

O(m- log* (n))
actually even a little better!

« For all practical purposes this is amortized

constant time

