
1

Disjoint Set Union Find
or

How I Learned to Stop Linking
and Love the Array

A poorly named rehash of a
Winter 2002 lecture

Nick Deibel

f

g ha

b

c

id

e

0 -1 0 1 2 -1 -1 7-1

0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)

Nifty storage trick
A forest of up-trees

can easily be stored
in an array.

Also, if the node
names are integers
or characters, we
can use a very
simple, perfect hash.

up-index:

Implementation

I D f i nd(Obj ect x)

{

asser t (HashTabl e. cont ai ns(x)) ;

I D xI D = HashTabl e[x] ;

whi l e(up[xI D] ! = - 1) {

xI D = up[xI D] ;

}

r et ur n xI D;

}

I D uni on(Obj ect x, Obj ect y)

{

I D r oot x = f i nd(x) ;

I D r oot y = f i nd(y) ;

asser t (r oot x ! = r oot y) ;

up[y] = x;

}

t ypedef I D i nt ;
I D up[10000] ;

runtime: O(depth) runtime: O(1)

Room for Improvement:
Weighted Union

• Always makes the root of the larger tree the new root

• Often cuts down on height of the new up-tree

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

eCould we do a
better job on this union? Weighted union!

f

g ha

b c id

e

Weighted Union Code

I D uni on(Obj ect x, Obj ect y) {

r x = Fi nd(x) ;

r y = Fi nd(y) ;

asser t (r x ! = r y) ;

i f (wei ght [r x] > wei ght [r y]) {

up[r y] = r x;

wei ght [r x] += wei ght [r y] ;

}

el se {

up[r x] = r y;

wei ght [r y] += wei ght [r x] ;

}

}

t ypedef I D i nt ;

new runtime of union:
O(1)

new runtime of find:
O(depth)

Weighted Union Find Analysis

• Finds with weighted union are O(max up-tree height)

• But, an up-tree of height h with weighted union must have at
least 2h nodes

• � , 2max height � n and

max height � log n
• So, find takes O(log n)

Base case: h = 0, tree has 20 = 1 node
Induction hypothesis: assume true for h < h�
and consider the sequence of unions.
Case 1: Union does not increase max height.
Resulting tree still has � 2h nodes.
Case 2: Union has height h’= 1+h, where h =
height of each of the input trees. By induction
hypothesis each tree has � 2h� -1 nodes, so the
merged tree has at least 2h � nodes. QED.

2

Room for Improvement:
Path Compression

f g ha
b

c i
d

e

While we’ re f inding e,
could we do anything else?

• Points everything along the path of a find to the root

• Reduces the height of the entire access path to 1

f g ha
b

c i
d

e

Path compression!

Path Compression Example

f ha

b

c

d

e

g

find(e)

i

f ha

c

d

e

g

b

i

Path Compression Code
I D f i nd(Obj ect x) {

asser t (HashTabl e. cont ai ns(x)) ;

I D xI D = HashTabl e[x] ;

I D hol d = xI D;

whi l e(up[xI D] ! = - 1) {

xI D = up[xI D] ;

}

whi l e(up[hol d] ! = - 1) {

t emp = up[hol d] ;

up[hol d] = xI D;

hol d = t emp;

}

r et ur n xI D;

}

runtime: O(log n)

Digression: Inverse Ackermann’s

Let log(k) n = log (log (log … (log n)))

Then, let log* n = minimum k such that log(k) n � 1
How fast does log* n grow?

log* (2) = 1
log* (4) = 2
log* (16) = 3
log* (65536) = 4
log* (265536) = 5 (a 20,000 digit number!)
log* (2265536

) = 6

k logs

Complex Complexity of
Weighted Union + Path Compression

• Tarjan (1984) proved that m weighted union and
find operations with path commpression on a set
of n elements have worst case complexity

O(m� log*(n))
actually even a little better!

• For all practical purposes this is amortized
constant time

