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CSE 326: Data Structures
Topic #10

The Dynamic (Equivalence) Duo:

Union-by-Size & Path Compression

Luke McDowell
Summer Quarter 2003

Whack!!
ZING

POW
BAM! What’s a Good Maze?

Maze Construction Algorithm

While edges remain in E {
(A, B) = RemoveRandomWall ()
if( A and B have not been

connected ) {
Add (A, B) to E’
Mark A and B as connected

}
}

• Given:
• A collection of rooms V
• Connections between the rooms (initially all closed)  E

• We want to build a collection of connections to knock down, 
E’ ? E, such that one unique path connects every two rooms

A

B

The Problem, Formally

• “If A and B have not yet been 
connected”
– Are two elements in the same set?

• “Mark A and B as connected”
– Form the union of two sets

Disjoint Sets ADT

• Find(x)
– Returns set identifier
– Find(x) = Find(y) iff x and y

are in the same set
• Union(A, B)

– Arguments are set identifiers
– How do we union the sets 

containing x and y?
• MakeNewSet(item)

– Create a new set containing 
only item

A

B

Disjoint Sets Formal Properties

• Equivalence property
– Every element of a DS 

belongs to exactly one set 

• Dynamic equivalence 
property
– The set of an element can 

change after execution of 
a union

{1,4,8}

{7}

{6}

{5,9,10}
{2,3}

find(4)
8

union(3,6)

{2,3,6}
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Our Modified Maze Construction Algorithm

While edges remain in E
(A, B) = RemoveRandomWall ()
if( Find( A) != Find( B) ) 

E? = E? U (A, B) 
Union( Find( A), Find(B) )

A

B

Example

Construct the maze on the right

Initially (the name of each set is 
underlined):

{a}{b}{c}{d}{e}{f}{g}{h}{i}

Order of edges in blue

3
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1

7

9

6

8

12 5

a b c

d e f

hg i

Example, continued
{a}{b}{c}{d}{e}{f}{g}{h}{i}

find(b) ? b
find(e) ? e
find(b) ? find(e) so:

add 1 to E?
union(b, e)

Result:

3

2
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11

10

7

9

6

8

12 5

a b c

d e f

hg i

Order of edges in blue

DS ADT Tree Representation

• Maintain a forest
of up-trees

• Each set is a tree
• What’s the set 

identifier?

B B

A A

Find Implementation

Find(x)
– Walk parents of x to 

the root

Runtime:

B

Union Implementation

Union(A, B)
– Join the two trees
– Since A and B are 

already the roots of a 
tree, this is easy!

Runtime:

BA

A

+
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More of the Example 

union(b,e)

e f g ha b c d i

3

2

4

11
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1

7

9

6

8

12 5

a b c

d e f

hg i

(extra space)

The Final Maze

Ooh…  scary!
Such a hard maze!

a b c

d e f

hg i

Mini-Exercise
Assume union always keeps first argument as the root
1. Starting with distinct sets a,b,c,d,e,f,g

– Union(a,c)
– Union(b,d)
– Union(a,e)
– Find(c)
– Union(e,f)
– Union(f,a)
– Union(b,c)
– Find(c)

2. Must Find(c) always return the same value?
3. Could Union have done a better job?

(extra space)

f

g ha

b

c

id

e

0 -1 0 1 2 -1 -1 7-1
0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)

Nifty storage trick

A forest of up-trees 
can easily be 
stored in an array.

Use hashtable to 
map node names 
to array indices 

up-index:
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Implementation

int Find(Object x) {
int xID = hTable[x];

while(up[ xID] != -1) {
xID = up[xID];

}

return xID;
}

void Union( int x, int y) {
up[y] = x;

}

Improving Union

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e

Could we do a better 
job on this union?

Union-by-size Code
int Union(int x, int y) {

// If up[x] and up[y] aren’t both
// -1, this algorithm is in trouble

if (size[x] > size[y]) {
up[y] = x;
size[x] += size[y];

}
else {

up[x] = y;
size[y] += size[x];

}
}

new runtime for Union():

new runtime for Find():

Union-by-Size Find Analysis

• Finds are O(max node depth)
• All nodes start at depth 0
• Depth increases 

– Only when part of smaller tree in a union
– Only by one (1) level at a time
– How many times can this happen? 

• ? , union runtime = 

Improving Find 

f g ha
b

c i
d

e

While we’re finding e, 
could we do anything else?

Wait - what’s there to 
improve?

Path Compression!
find(e)

f ha

b

c

d

e

g

i
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Exercise
Use union-by-size.  Keep the first argument as root if there’s a tie.
How many nodes does each Find access?
1. Starting with distinct sets a,b,c,d,e,f,g

– Union(a,c)
– Union(b,d)
– Union(a,e)
– Union(g,h)
– Find(c)
– Union(b,h)
– Union(e,f)
– Union(f,a)
– Union(b,c)
– Find(c)
– Find(h)
– Find(g)

2. Modify the above to also use Path Compression.  Does it help?
3. Using union-by-size, what is the worst case depth of any node?  Construct 

a sequence of union operations that produces this for a depth of 5. 

(extra space)

Path Compression Code

int Find(Object x) {
// x had better be in 
// the set!
int xID = hTable[x];
int i = xID;

// Get the root for 
// this set
while(up[xID] != -1) {
xID = up[xID];

}

// Change the parent for
// all nodes along the path  
while(up[i] != -1) {

temp = up[i];
up[i] = xID;
i = temp;

}
return xID;

}

(New?) runtime for Find():

Interlude: A Really Slow Function

Ackermann created a really big function A(x, y) with 
the inverse ? (x, y) which is really small

How fast does ? (x, y) grow?   
? (x, y) = 4 for x far larger than the number of 
atoms in the universe (2300)

? shows up in:
– Computation Geometry (surface complexity)
– Combinatorics of sequences

Complex Complexity of 
Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, m union and 
find operations on a set of n elements have worst case 
complexity of O(m?? (m, n))

For all practical purposes this is amortized constant time:
O(m?4) for m operations!

In some practical cases, one or both optimizations is 
unnecessary, because trees do not naturally get very 
deep.

Disjoint Sets ADT Summary

• Also known as Union-Find or Disjoint Set 
Union/Find

• Simple, efficient implementation
– With union-by-size and path compression

• Great asymptotic bounds
• Kind of weird at first glance, but lots of 

applications


