

What's a Good Maze?

The Problem, Formally

- "If \mathbf{A} and \mathbf{B} have not yet been connected"
- Are two elements in the same set?

- "Mark A and B as connected"
- Form the union of two sets
(\mathbf{A}, \mathbf{B}) $=$ RemoveRandomWall ()
if $(\mathbf{A}$ and \mathbf{B} have not been
connected) \{
Add (\mathbf{A}, \mathbf{B}) to \mathbf{E}^{\prime}
Mark A and B as connected
\}
\}

Maze Construction Algorithm

- Given:
- A collection of rooms \mathbf{V}
- Connections between the rooms (initially all closed) \mathbf{E}
- We want to build a collection of connections to knock down,
\mathbf{E}^{\prime} ? \mathbf{E}, such that one unique path connects every two rooms

$$
\text { While edges remain in } \mathbf{E}\{
$$

(A, B) Reva

Add (\mathbf{A}, \mathbf{B}) to \mathbf{E}^{\prime}

Disjoint Sets ADT

- Find (x)
- Returns set identifier
$-\operatorname{Find}(x)=\operatorname{Find}(y)$ iff x and y are in the same set
- Union(A, B)
- Arguments are set identifiers
- How do we union the sets containing x and y ?
- MakeNewSet(item)
- Create a new set containing only item

Disjoint Sets Formal Properties

- Equivalence property
- Every element of a DS belongs to exactly one set
- Dynamic equivalence property
- The set of an element can
 change after execution of a union

Mini-Exercise

Assume union always keeps first argument as the root

1. Starting with distinct sets a, b, c, d, e, f, g

- Union(a,c)
- Union(b,d)
- Union(a,e)
- Find(c)
- Union(e,f)
- Union(f,a)
- Union(b,c)
- Find(c)

2. Must Find(c) always return the same value?
3. Could Union have done a better job?

(extra space)

Nifty storage trick
A forest of up-trees can easily be stored in an array.
Use hashtable to map node names to array indices

up-index:

$$
\begin{aligned}
& 0 \text { (a) } 1 \text { ((b) } 2 \text { (c|c|c|c|c|c|c|} \begin{array}{|c|c|c|c|c|c|c|c|}
\hline-1 & 0 & -1 & 0 & 1 & 2 & -1 & -1 \\
\hline
\end{array}
\end{aligned}
$$

Union-by-size Code

```
int Union(int x, int y) {
    // If up[x] and up[y] aren't both
    // -1, this algorithm is in trouble
    if (size[x] > size[y]) {
        up[y] = x;
        size[x] += size[y];
    }
    new runtime for Union():
    else {
        up[x] = y;
        size[y] += size[x];
    }
new runtime for Find():
}
```

- ? , union runtime $=$


```
int Find(Object x) {
    // x had better be in
    // the set!
    int xID = hTable [x];
    int i = xID;
    // Get the root for
    // this set
    while(up[xID] != -1) {
        xID = up[xID];
    }
    // Change the parent for
    // all nodes along the path
    while(up[i] != -1) {
        temp = up[i];
        up[i] = xID;
        i = temp;
    }
    return xID;
}
(New?) runtime for Find():
I/ \(x\) had better // the set!
int xID = hTable [x];
int \(\mathrm{i}=\mathrm{xID}\);
et the root for
while (up [xID] !=-1) \{
\}
```


Path Compression Code

Interlude: A Really Slow Function

Ackermann created a really big function $\mathrm{A}(\mathrm{x}, \mathrm{y})$ with the inverse ? (x, y) which is really small

How fast does ? (x, y) grow?
$?(\mathrm{x}, \mathrm{y})=4$ for x far larger than the number of
atoms in the universe $\left(2^{300}\right)$
? shows up in:

- Computation Geometry (surface complexity)
- Combinatorics of sequences
\square

Complex Complexity of Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, m union and find operations on a set of n elements have worst case complexity of $\mathrm{O}(m ?(m, n))$

For all practical purposes this is amortized constant time: $\mathrm{O}(m ? 4)$ for m operations!

In some practical cases, one or both optimizations is unnecessary, because trees do not naturally get very deep.

Disjoint Sets ADT Summary

- Also known as Union-Find or Disjoint Set Union/Find
- Simple, efficient implementation
- With union-by-size and path compression
- Great asymptotic bounds
- Kind of weird at first glance, but lots of applications

