
1

CSE 326: Data Structures
Topic #10

The Dynamic (Equivalence) Duo:

Union-by-Size & Path Compression

Luke McDowell
Summer Quarter 2003

Whack!!
ZING

POW
BAM! What’s a Good Maze?

Maze Construction Algorithm

While edges remain in E {
(A, B) = RemoveRandomWall ()
if(A and B have not been

connected) {
Add (A, B) to E’
Mark A and B as connected

}
}

• Given:
• A collection of rooms V
• Connections between the rooms (initially all closed) E

• We want to build a collection of connections to knock down,
E’ ? E, such that one unique path connects every two rooms

A

B

The Problem, Formally

• “If A and B have not yet been
connected”
– Are two elements in the same set?

• “Mark A and B as connected”
– Form the union of two sets

Disjoint Sets ADT

• Find(x)
– Returns set identifier
– Find(x) = Find(y) iff x and y

are in the same set
• Union(A, B)

– Arguments are set identifiers
– How do we union the sets

containing x and y?
• MakeNewSet(item)

– Create a new set containing
only item

A

B

Disjoint Sets Formal Properties

• Equivalence property
– Every element of a DS

belongs to exactly one set

• Dynamic equivalence
property
– The set of an element can

change after execution of
a union

{1,4,8}

{7}

{6}

{5,9,10}
{2,3}

find(4)
8

union(3,6)

{2,3,6}

2

Our Modified Maze Construction Algorithm

While edges remain in E
(A, B) = RemoveRandomWall ()
if(Find(A) != Find(B))

E? = E? U (A, B)
Union(Find(A), Find(B))

A

B

Example

Construct the maze on the right

Initially (the name of each set is
underlined):

{a}{b}{c}{d}{e}{f}{g}{h}{i}

Order of edges in blue

3

2

4

11

10

1

7

9

6

8

12 5

a b c

d e f

hg i

Example, continued
{a}{b}{c}{d}{e}{f}{g}{h}{i}

find(b) ? b
find(e) ? e
find(b) ? find(e) so:

add 1 to E?
union(b, e)

Result:

3

2

4

11

10

7

9

6

8

12 5

a b c

d e f

hg i

Order of edges in blue

DS ADT Tree Representation

• Maintain a forest
of up-trees

• Each set is a tree
• What’s the set

identifier?

B B

A A

Find Implementation

Find(x)
– Walk parents of x to

the root

Runtime:

B

Union Implementation

Union(A, B)
– Join the two trees
– Since A and B are

already the roots of a
tree, this is easy!

Runtime:

BA

A

+

3

More of the Example

union(b,e)

e f g ha b c d i

3

2

4

11

10

1

7

9

6

8

12 5

a b c

d e f

hg i

(extra space)

The Final Maze

Ooh… scary!
Such a hard maze!

a b c

d e f

hg i

Mini-Exercise
Assume union always keeps first argument as the root
1. Starting with distinct sets a,b,c,d,e,f,g

– Union(a,c)
– Union(b,d)
– Union(a,e)
– Find(c)
– Union(e,f)
– Union(f,a)
– Union(b,c)
– Find(c)

2. Must Find(c) always return the same value?
3. Could Union have done a better job?

(extra space)

f

g ha

b

c

id

e

0 -1 0 1 2 -1 -1 7-1
0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)

Nifty storage trick

A forest of up-trees
can easily be
stored in an array.

Use hashtable to
map node names
to array indices

up-index:

4

Implementation

int Find(Object x) {
int xID = hTable[x];

while(up[xID] != -1) {
xID = up[xID];

}

return xID;
}

void Union(int x, int y) {
up[y] = x;

}

Improving Union

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e

Could we do a better
job on this union?

Union-by-size Code
int Union(int x, int y) {

// If up[x] and up[y] aren’t both
// -1, this algorithm is in trouble

if (size[x] > size[y]) {
up[y] = x;
size[x] += size[y];

}
else {

up[x] = y;
size[y] += size[x];

}
}

new runtime for Union():

new runtime for Find():

Union-by-Size Find Analysis

• Finds are O(max node depth)
• All nodes start at depth 0
• Depth increases

– Only when part of smaller tree in a union
– Only by one (1) level at a time
– How many times can this happen?

• ? , union runtime =

Improving Find

f g ha
b

c i
d

e

While we’re finding e,
could we do anything else?

Wait - what’s there to
improve?

Path Compression!
find(e)

f ha

b

c

d

e

g

i

5

Exercise
Use union-by-size. Keep the first argument as root if there’s a tie.
How many nodes does each Find access?
1. Starting with distinct sets a,b,c,d,e,f,g

– Union(a,c)
– Union(b,d)
– Union(a,e)
– Union(g,h)
– Find(c)
– Union(b,h)
– Union(e,f)
– Union(f,a)
– Union(b,c)
– Find(c)
– Find(h)
– Find(g)

2. Modify the above to also use Path Compression. Does it help?
3. Using union-by-size, what is the worst case depth of any node? Construct

a sequence of union operations that produces this for a depth of 5.

(extra space)

Path Compression Code

int Find(Object x) {
// x had better be in
// the set!
int xID = hTable[x];
int i = xID;

// Get the root for
// this set
while(up[xID] != -1) {
xID = up[xID];

}

// Change the parent for
// all nodes along the path
while(up[i] != -1) {

temp = up[i];
up[i] = xID;
i = temp;

}
return xID;

}

(New?) runtime for Find():

Interlude: A Really Slow Function

Ackermann created a really big function A(x, y) with
the inverse ? (x, y) which is really small

How fast does ? (x, y) grow?
? (x, y) = 4 for x far larger than the number of
atoms in the universe (2300)

? shows up in:
– Computation Geometry (surface complexity)
– Combinatorics of sequences

Complex Complexity of
Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, m union and
find operations on a set of n elements have worst case
complexity of O(m?? (m, n))

For all practical purposes this is amortized constant time:
O(m?4) for m operations!

In some practical cases, one or both optimizations is
unnecessary, because trees do not naturally get very
deep.

Disjoint Sets ADT Summary

• Also known as Union-Find or Disjoint Set
Union/Find

• Simple, efficient implementation
– With union-by-size and path compression

• Great asymptotic bounds
• Kind of weird at first glance, but lots of

applications

