
1

CSE 326: Data Structures
Sorting in (kind of) linear time

Luke McDowell
Summer Quarter 2003

BinSort (aka BucketSort)
• If all keys are between 1 and K
• Have array of size K
• Put keys into correct bin (cell) of array

Example K=5. Values = (5,1,3,4,3,2,1,1,5,4,5)

key = 5
key = 4
key = 3
key = 2
key = 1
Bins in array

Running time?

BinSort Running Time:

• Case 1: K is a constant
– BinSort is linear time

• Case 2: K is variable
– Not simply linear time

• Case 3: K is large (e.g. 232)
– ???

Digression: Stable Sorting
• Stable Sorting algorithm.

– Items in input with the same key end up in the
same order as when they began.

– Important if keys have associated values
• Are these stable?

– RadixSort?
– MergeSort?
– QuickSort?

RadixSort

• Radix = “The base of a number system”
(Webster’s dictionary)
– We’ll use 10 for convenience, but could be

anything

• Random Trivia?

• Idea: BinSort on each digit, bottom up.

RadixSort – magic! It works.
• Input:126, 328, 636, 341, 416, 131, 328

9876543210

BinSort on lowest digit:

9876543210

BinSort on next-higher digit:

9876543210

BinSort on highest digit:

2

Not magic. It provably works.

• Keys
– n-digit numbers
– base K

• Claim: after ith BinSort, least significant i
digits are sorted.
– e.g. K=10, i=3, keys are 1776 and 8234. 8234

comes before 1776 for last 3 digits.

Induction to the rescue…
• Base case

– i=0. 0 digits are sorted
• Induction step

– assume for i, prove for i+1.
– consider two numbers: X, Y. Say Xi is ith digit

of X (from the right)
• Xi+1 < Yi+1 then i+1th BinSort will put them in order
• Xi+1 > Yi+1 , same thing
• Xi+1 = Yi+1 , order depends on last i digits. Induction

hypothesis says already sorted for these digits.
(Careful about ensuring that your BinSort preserves
order aka “stable”…)

Time to play at home…
• RadixSort the following values using K=10:

95, 3, 927, 187, 604, 823, 805, 422, 159, 98, 123,
3, 987, 125.
(space on next slide)

• Given arbitrary numbers A1, A2, … An, and a base
K, what is the overall running time of radix sort?

• How should you choose the value of K?

(extra space)

Running time of Radixsort
• How many passes?

• How much work per pass?

• Total time?

• Conclusion?

• In practice
– RadixSort only good for large number of items,

relatively small keys
– Hard on the cache, vs. MergeSort/QuickSort

What data types can you
RadixSort?

• Any type T that can be BinSorted
• Any type T that can be broken into parts A

and B,
– You can reconstruct T from A and B
– A can be RadixSorted
– B can be RadixSorted
– A is always more significant than B, in ordering

3

Example:

• 1-digit numbers can be BinSorted
• 2 to 5-digit numbers can be BinSorted

without using too much memory
• 6-digit numbers, broken up into A=first 3

digits, B=last 3 digits.
– A and B can reconstruct original 6-digits
– A and B each RadixSortable as above
– A more significant than B

RadixSorting Strings

• 1 Character can be BinSorted
• Break strings into characters
• Need to know length of biggest string (or

calculate this on the fly).

RadixSorting Strings example

spalfString 4

stnaString 3

pazString 2

yppizString 1

1st

pass
2nd

pass
3rd

pass
4th

pass
5th

pass

NULLs are
just like fake
characters

RadixSorting Strings running
time

• N is number of strings
• L is length of longest string
• Total Running time:

• L ~ 20. Is this better than Quicksort?

