CSE 326: Data Structures Sorting in (kind of) linear time

Luke McDowell
Summer Quarter 2003

BinSort (aka BucketSort)

- If all keys are between 1 and K
- Have array of size K
- Put keys into correct bin (cell) of array

Example K=5. Values $=(5,1,3,4,3,2,1,1,5,4,5)$

Bins in array	
key $=1$	
key $=2$	
key $=3$	
key $=4$	
key $=5$	

BinSort Running Time:

- Case 1: K is a constant
- BinSort is linear time
- Case 2: K is variable
- Not simply linear time
- Case 3: K is large (e.g. 2^{32})
- ???

Digression: Stable Sorting

- Stable Sorting algorithm.
- Items in input with the same key end up in the same order as when they began.
- Important if keys have associated values
- Are these stable?
- RadixSort?
- MergeSort?
- QuickSort?

RadixSort

- Radix $=$ "The base of a number system" (Webster's dictionary)
- We'll use 10 for convenience, but could be anything
- Random Trivia?
- Idea: BinSort on each digit, bottom up.

RadixSort - magic! It works.

Not magic. It provably works.

- Keys
- n-digit numbers
- base K
- Claim: after $i^{\text {th }}$ BinSort, least significant i digits are sorted.
- e.g. $K=10, i=3$, keys are 1776 and 8234. $8 \underline{234}$ comes before $1 \underline{776}$ for last 3 digits.

Induction to the rescue...

- Base case
$-\mathrm{i}=0.0$ digits are sorted
- Induction step
- assume for i , prove for $\mathrm{i}+1$.
- consider two numbers: X, Y. Say X_{i} is $i^{\text {th }}$ digit of X (from the right)
- $X_{i+1}<Y_{i+1}$ then $i+1^{\text {th }}$ BinSort will put them in order - $X_{i+1}>Y_{i+1}$, same thing
- $X_{i+1}=Y_{i+1}$, order depends on last i digits. Induction hypothesis says already sorted for these digits. (Careful about ensuring that your BinSort preserves order aka "stable"...)

Time to play at home...

- RadixSort the following values using $\mathrm{K}=10$: 95, 3, 927, 187, 604, 823, 805, 422, 159, 98, 123, 3, 987, 125.
(space on next slide)
- Given arbitrary numbers $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \mathrm{~A}_{\mathrm{n}}$, and a base K , what is the overall running time of radix sort?
- How should you choose the value of K?

Running time of Radixsort

- How many passes?
- How much work per pass?
- Total time?
- Conclusion?
- In practice
- RadixSort only good for large number of items, relatively small keys
- Hard on the cache, vs. MergeSort/QuickSort

What data types can you RadixSort?

- Any type T that can be BinSorted
- Any type T that can be broken into parts A and B,
- You can reconstruct T from A and B
- A can be RadixSorted
- B can be RadixSorted
- A is always more significant than B , in ordering

Example:

- 1-digit numbers can be BinSorted
- 2 to 5-digit numbers can be BinSorted without using too much memory
- 6-digit numbers, broken up into $\mathrm{A}=$ first 3 digits, $\mathrm{B}=$ last 3 digits.
- A and B can reconstruct original 6-digits
- A and B each RadixSortable as above
- A more significant than B

RadixSorting Strings

- 1 Character can be BinSorted
- Break strings into characters
- Need to know length of biggest string (or calculate this on the fly).

RadixSorting Strings example						
	$\begin{array}{\|l} 5^{\text {th }} \\ \text { pass } \\ \hline \end{array}$	$\begin{array}{\|l} 4^{\text {th }} \\ \text { pass } \end{array}$	$\begin{array}{\|l\|} \hline 3^{\text {rd }} \\ \text { pass } \end{array}$	$\begin{aligned} & 2^{\text {nd }} \\ & \text { pass } \end{aligned}$	pass ${ }^{1}$	
String 1	Z	i	p	p	y	
String 2	Z	a	p			NULLs
String 3	a	n	t	S		just like fake characters
String 4	f	1	a	p	S	

RadixSorting Strings running time

- N is number of strings
- L is length of longest string
- Total Running time:
- L ~ 20. Is this better than Quicksort?

