

CSE 326: Data Structures

Topic 17: Becoming Famous with P and NP

Luke McDowell

Summer Quarter 2003

Euler Circuits

Euler Circuit Example

Euler with a Twist: Hamiltonian Circuits

Finding Hamiltonian Circuits in Graphs
\pm Problem: Find a Hamiltonian circuit in a graph $\mathrm{G}=(V, E)$
\dagger Sub-problem: Does G contain a Hamiltonian circuit?
\dagger Is there an easy (linear time) algorithm for checking this?
\dagger Runtime?

Polynomial versus Exponential Time

t Most of our algorithms so far have been $\mathrm{O}(\log \mathrm{N}), \mathrm{O}(\mathrm{N})$, $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ or $\mathrm{O}\left(\mathrm{N}^{2}\right)$ running time for inputs of size N

+ These are all polynomial time algorithms
t Their running time is $\mathrm{O}\left(\mathrm{N}^{\mathrm{k}}\right)$ for some $\mathrm{k}>0$
+ Exponential time B^{N} is asymptotically worse than any polynomial function N^{k} for any k
+ For any $k, \mathrm{~N}^{\mathrm{k}}$ is $\mathrm{o}\left(\mathrm{B}^{\mathrm{N}}\right)$ for any constant $\mathrm{B}>1$
t Polynomial time algorithms are generally regarded as "fast" algorithms - these are the kind we want!
\dagger Exponential time algorithms are generally inefficient - avoid these!
Based on R. Rao, 326 Winter 2003

The "complexity" class NP
\pm Definition: NP is the set of all problems for which a given candidate solution can be checked in polynomial time

+ Example of a problem in NP:
+ Our new friend, the Hamiltonian circuit problem: Why is it in NP?
t NP = "Non-Deterministic Polynomial Time"

Based on R. Rao, 326 Winter 2003

The Intimate Relationship between P and NP
t Sorting is in P. Are any other problems in P also in NP? † YES!

+ All problems in P are also in NP i.e. P? NP
t If you can solve a problem in polynomial time, can definitely verify a solution in polynomial time
\dagger So, some problems in NP like searching, sorting, etc. are also in P .
\pm Question: Are all problems in NP also in P? † Is NP? P?

Your chance to win a Turing award: $\mathrm{P}=\mathrm{NP}$?
t Nobody knows whether NP ? P
† Proving or disproving this will bring you instant fame!
\dagger It is generally believed that P ? NP i.e. there are problems in NP that are not in P
† But no one has been able to show even one such problem
\pm A very large number of problems are in NP (such as the Hamiltonian circuit problem) but not known to be in P

+ No one has found fast (polynomial time) algorithms for these problems
t No one has been able to prove such algorithms don't exist (i.e. that these problems are not in P)!

Based on R. Rao, 326 Winter 2003

P, NP, and Exponential Time Problems
† All algorithms for NP-complete problems so far have tended to run in nearly exponential worst case time
\dagger But this doesn't mean fast sub-exponential time algorithms don't exist! Not proven yet...
† Diagram depicts relationship between P, NP, and EXPTIME (class of problems that can be solved within exponential time) Based on R. Rao, 326 Winter 2003

NP-complete problems
t The "hardest" problems in NP are called NP-complete (NPC) problems

+ Why "hardest"? A problem X is NP-complete if:

1. X is in NP and
2. any problem Y in NP can be converted to X in polynomial time such that solving X also provides a solution for Y
(If only 2 holds, X is said to be NP-hard)
Input to Y \longrightarrow "Converter" Algorithm \longrightarrow Input to X (runs in poly time)
We say that problem Y can be reduced to X
Note: X is NP-hard if all problems in NP can be reduced to X
Based on R. Rao, 326 Winter 2003 14

The Power of NP-completeness
$\underset{\mathrm{Y} \text { in NP }}{\text { All problems }} \xrightarrow[\text { Convert input }]{\longrightarrow}$ (any NPC problem) Algorithm for $\mathrm{X} \longrightarrow$ Solution

+ Thus, if you find a poly time algorithm for just one NPC problem X, all problems in NP can be solved in poly time
+ Example: The Hamiltonian circuit problem can be shown to be NP-complete (not so easy to prove from scratch!)

Based on R. Rao, 326 Winter 2003
15

The "graph" of NP-completeness

+ Cook first showed (in 1971)
that satisfiabilitity of Boolean
formulas (SAT) is NP-complete

+| Hundreds of other problems |
| :--- |
| (from scheduling and databases |
| to optimization theory) have |
| since been shown to be NPC |
| + How? By giving an algorithm |
| for converting a known NPC |
| problem to your pet problem |
| in poly time. Then, your |
| problem is also NPC! |

Showing NP-completeness: An Example
t Consider the Traveling Salesperson (TSP) Problem: Given a fully connected, weighted graph $G=(V, E)$, is there a cycle that visits all vertices exactly once and has total cost? K?

+ TSP is in NP (why?)
t Can we show TSP is NP-
complete? How?

Based on R. Rao, 326 Winter 2003

Showing NP-completeness: An Example
t Can we show TSP is NPcomplete?

+ We know Hamiltonian Circuit (HC) is NPC
† Can show TSP is also NPC if we can convert any input for HC to an input for TSP in poly time (Why?)

Cycle with cost
? $8=$ BDCEB

Input for HC
18

Coping with NP-completeness
\pm Given that it is difficult to find fast algorithms for NPC problems, what do we do?

+ Alternatives:

1. Dynamic programming: Avoid repeatedly solving the same subproblem - use table to store results (see Chap. 10)
2. Settle for algorithms that are fast on average: Worst case still takes exponential time, but doesn't occur very often
3. Settle for fast algorithms that give near-optimal solutions: In TSP, may not give the cheapest tour, but maybe good enough
4. Try to get a " wimpy exponential" time algorithm: It's okay if running time is $\mathrm{O}\left(1.00001^{\mathrm{N}}\right)$ - bad only for $\mathrm{N}>1,000,000$
