Course Policies – Updated · Written homeworks - Due at the start of class on due date - No late homeworks accepted CSE 326: Data Structures · Programming homeworks - Turned in electronically before 11pm on due date Topic 2: Asymptotic Analysis Once per quarter: use your "late day" for extra 24 hours - Must email TA · Work in teams only on explicit team projects - Appropriate discussions encouraged - see website • Approximate Grading Luke McDowell - Weekly assignments: 35% Midterm: 20% Friday July 25, in class Summer Quarter 2003 - Final: 30% Friday Aug. 22 in class - Best of above 3: 10% 5% - Participation:

Analysis of Algorithms · Efficiency measure - how long the program runs time complexity T(n) = 4n + 5- how much memory it uses space complexity · For today, we'll focus on time complexity only • Why analyze at all? - Confidence: algorithm will work well in practice Insight : alternative, better algorithms

Asymptotic Analysis

- Complexity as a function of input size n $T(n) = 0.5 n \log n - 2n + 7$ $T(n) = 2^n + n^3 + 3n$
- What happens as **n** grows?

2 3 5 16 37 50 73 75 126 What algorithm would you choose

to implement this code snippet?

Luke Takes a Break: Simplifying assumptions

- Ideal single-processor machine (serialized operations)
- "Standard" instruction set (load, add, store, etc.)
- All operations take 1 time unit (including, for our purposes, each Java or C++ statement

LTaB: Analyzing Code

 Basic Java/C++ operations
 Constant time

 Consecutive statements
 Sum of times

 Conditionals
 Larger branch plus test

 Loops
 Sum of iterations

 Function calls
 Cost of function body

 Recursive functions
 Solve recurrence relation

True or False?

$\frac{10,000 n^2 + 25n ? ?(n^2)}{10^{-10} n^2 ? ?(n^2)}$	
$n^3 + 4$?? (n^2)	
$n \log n$? O(2 ⁿ)	
$n \log n ? ? (n^2)$	
$n^3 + 4$? $o(n^4)$	

Proof by... Inductive Proof of Correctness Counterexample int sum(int v[], int n) - show an example which does not fit with the theorem - QED (the theorem is disproven) if (n==0) return 0; Contradiction else return v[n-1]+sum(v,n-1); - assume the opposite of the theorem - derive a contradiction - QED (the theorem is proven) **Theorem:** sum(v,n) correctly returns sum of 1st n elements of Induction array v for any n. prove for a base case (e.g., n = 1) Basis Step: Program is correct for n=0; returns 0. ∠ - assume for an anonymous value (n) prove for the next value (n + 1) Inductive Hypothesis (n=k): Assume sum(v,k) returns sum of – QED first k elements of v. **Inductive Step** (n=k+1): sum(v,k+1) returns v[k]+sum(v,k), which is the same of the first k+1 elements of v. \varkappa

Inductive Proof (Binary Search)

If you know the closed form solution, you can validate it by ordinary induction

$T(1) ? b ? c \log 1 ? b$	base case	
Assume $T(n)$? b? $c \log n$	hypothesis	
T(2n) ? T(n) ? c	definition of T(n)	
$T(2n)$? (b? $c \log n$)? c by induction hypothesis		
$T(2n)$? b? $c((\log n)$? 1)		
$T(2n) ? b ? c((\log n) ? (\log 2))$		
$T(2n)$? b ? $c \log(2n)$	Q.E.D.	
Thus: $T(n)$? ? $(\log n)$		

Asymptotic Analysis Summary

- Determine what characterizes a problem's size
- Express how much resources (time, memory, etc.) an algorithm requires as a function of input size using O(•), ? (•), ?(•)
- worst case
- best case
- average case
- common case
- overall

To Do

- Continue Homework 1
 - Due Monday, June 30 at 11 PM sharp!
 - Bring questions to section tomorrow
- Sign up for 326 mailing list(s)
- Continue reading 1.1-1.3, Chapters 2 and 3 in the book
 - Also start/skim on next sections: 4.1 (introduction to trees), and sections 6.1-6.4 (priority queues and binary heaps)