CSE 326: Data Structures
Topic 2: Asymptotic Analysis

Luke McDowell Summer Quarter 2003

Course Policies - Updated

- Written homeworks
- Due at the start of class on due date
- No late homeworks accepted
- Programming homeworks

Turned in electronically before 11 pm on due date

- Once per quarter: use your "late day" for extra 24 hours - Must email TA
- Work in teams only on explicit team projects
- Appropriate discussions encouraged - see website
- Approximate Grading
- Weekly assignments:
- Midterm:
Final: 35%
20%
30%
$\begin{array}{ll}\text { - Best of above 3: } & 10 \% \\ \text { - Participation: } & 5 \%\end{array}$
- Participation:
Friday July 25 , in class Friday Aug. 22 in class

Analysis of Algorithms
Asymptotic Analysis

- Complexity as a function of input size n
$\mathrm{T}(\mathrm{n})=4 \mathrm{n}+5$
$T(n)=0.5 n \log n-2 n+7$
$\mathrm{T}(\mathrm{n})=2^{\mathrm{n}}+\mathrm{n}^{3}+3 \mathrm{n}$
- What happens as n grows?
- Why analyze at all?
- Confidence: algorithm will work well in practice
- Insight : alternative, better algorithms

Why do we care?

- Most algorithms are fast for small n
- Time difference too small to be noticeable
- External things dominate (OS, disk I/O, ...)
- BUT n is often large in practice
- Databases, internet, graphics, ...
- Time difference really shows up as n grows!

Luke Takes a Break

Luke Takes a Break: Simplifying assumptions

- Ideal single-processor machine (serialized operations)
- "Standard" instruction set (load, add, store, etc.)
- All operations take 1 time unit (including, for our purposes, each Java or C++ statement

LTaB: Analyzing Code

Basic Java/C++ operations Constant time

 Consecutive statements Sum of timesConditionals Larger branch plus test
Loops Sum of iterations
Function calls Cost of function body
Recursive functions Solve recurrence relation

LTaB: Linear Search Analysis

```
bool ArrayFind( int array[]
\[
\begin{aligned}
& \text { int array } \\
& \text { int }, \\
& \text { int key }
\end{aligned}
\]
\{
- Best Case:
\[
\text { for ( int } i=0 \text {; } i<n \text {; i++ ) }
\]
\[
1
\]
// Found it!
\[
\text { if }(\operatorname{array}[i]==\text { key })
\]
return true;
return false;
```

LTaB: Binary Search Analysis
bool ArrayFind (int array[], int s,

$$
\begin{aligned}
& \text { int e, int } \\
& \text { // The subarray is empty } \\
& \text { if (s > e) }
\end{aligned}
$$

if (s >e)
return false;
// Search this subarray

- Best case:
int mid $=(e+s) / 2$;
if($\operatorname{array[key]~==} \operatorname{array[mid]}$) (return true;
\} else if (key < array [mid]) i - Worst case:
return ArrayFind (array, s,
r
\} else \{
mid-1, key);
return ArrayFind (array, mid+1,
e, key);

Linear Search vs Binary Search
Solving Recurrence Relations

1. Determine the recurrence relation. What are the base case(s)?
2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.
3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

	Linear Search	Binary Search
Best Case		
Worst Case		

[^0]Fast Computer vs. Slow Computer

Fast Computer vs. Smart Programmer (round 1)

Asymptotic Analysis

- Asymptotic analysis looks at the order of the running time of the algorithm
- A valuable tool when the input gets "large"
- Ignores the effects of different machines or different implementations of the same algorithm
- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
- Linear search is $\mathrm{T}(n)=2 n+1$? $\mathrm{O}(n)$
- Binary search is $\mathrm{T}(n)=4 \log _{2} n+2$? $\mathrm{O}(\log n)$

Remember: the fastest algorithm has the
slowest growing function for its runtime

Order Notation: Definition
$\mathrm{O}(\mathrm{f}(n))$ is a set of functions
$\mathrm{g}(n) ? \mathrm{O}(\mathrm{f}(n))$ iff
There exist c and n_{0} such that $\mathbf{g}(n) ? c \mathrm{f}(n)$ for all $n ? n_{0}$
Example:
$100 n^{2}+1000 ? 5\left(n^{3}+2 n^{2}\right)$ for all $n ? 19$
So $\mathrm{g}(n)$? $\mathrm{O}(\mathrm{f}(n))$
Sometimes, you'll see the notation $\mathrm{g}(n)=\mathrm{O}(\mathrm{f}(n))$. This equivalent to $\mathrm{g}(n)$? $\mathrm{O}(\mathrm{f}(n))$. However, the notation $\mathrm{O}(\mathrm{f}(n))=\mathrm{g}(n)$ is not correct

Order Notation: Example

$100 n^{2}+1000 ? 5\left(n^{3}+2 n^{2}\right)$ for all $n ? 19$
So $\mathrm{g}(n)$? $\mathbf{O}(\mathrm{f}(n))$

Big-O Common Names

- constant:	$\mathrm{O}(1)$	
- logarithmic:	$\mathrm{O}\left(\log _{\mathrm{n}}\right)$	$\left(\log _{\mathrm{k}} \mathrm{n}, \log \mathrm{n}^{2} ? \mathrm{O}(\log \mathrm{n})\right)$
- poly-log:	$\mathrm{O}\left(\log ^{\mathrm{k}} \mathrm{n}\right)$	
- linear:	$\mathrm{O}(\mathrm{n})$	
- log-linear:	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	
- superlinear:	$\mathrm{O}\left(\mathrm{n}^{1+\mathrm{c}}\right)$	$(\mathrm{c}$ is a constant $>0)$
- quadratic:	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	
- cubic:	$\mathrm{O}\left(\mathrm{n}^{3}\right)$	
- polynomial:	$\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$	(k is a constant)
- exponential:	$\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$	$($ c is a constant $>1)$

Meet the Family

- $\mathrm{O}(\mathrm{f}(n))$ is the set of all functions asymptotically less than or equal to $\mathrm{f}(n)$
- $\mathrm{o}(\mathrm{f}(n))$ is the set of all functions asymptotically strictly less than $\mathrm{f}(n)$
- ? $(\mathrm{f}(n))$ is the set of all functions asymptotically greater than or equal to $\mathrm{f}(n)$
? $(\mathrm{f}(n))$ is the set of all functions asymptotically strictly greater than $\mathrm{f}(n)$
- ?($\mathrm{f}(n))$ is the set of all functions asymptotically equal to $\mathrm{f}(n)$

Meet the Family Formally (don't worry about dressing up)

- $\mathrm{g}(n)$? $\mathrm{O}(\mathrm{f}(n))$ iff

There exist c and n_{0} such that $\mathrm{g}(n) ? c \mathrm{f}(n)$ for all $n ? n_{0}$ $-\mathrm{g}(n)$? o($\mathrm{f}(n))$ iff

There exists a n_{0} such that $\mathrm{g}(n)<c \mathrm{f}(n)$ for all c and $n ? n_{0}$

- $\mathrm{g}(n)$? ? ($\mathrm{f}(n)$) iff

There exist c and n_{0} such that $\mathrm{g}(n) ? c \mathrm{f}(n)$ for all $n ? n_{0}$ $-\mathrm{g}(n)$? ? ($\mathrm{f}(n)$) iff
There exists a n_{0} such that $\mathrm{g}(n)>c \mathrm{f}(n)$ for all c and $n ? n_{0}$

- $\mathrm{g}(n)$? ? $(\mathrm{f}(n))$ iff
$\mathrm{g}(n) ? \mathrm{O}(\mathrm{f}(n))$ and $\mathrm{g}(n) ? ?(\mathrm{f}(n))$

Big-Omega et al. Intuitively

True or False?

Types of Analysis
Two orthogonal axes.

- bound flavor
- upper bound (O, o)
- lower bound (? , ?
- asymptotically tight (?)
- analysis case
- worst case (adversary)
- average case
- best case
- "amortized"

LTaB: Pros and Cons of Asymptotic Analysis

Proof by...

- Counterexample
show an example which does not fit with the theorem
- QED (the theorem is disproven)
- Contradiction
- assume the opposite of the theorem
- derive a contradiction
- QED (the theorem is proven)
- Induction
prove for a base case (e.g., $\mathrm{n}=1$)
- assume for an anonymous value (n)
- prove for the next value $(\mathrm{n}+1)$
- QED

Inductive Proof of Correctness

```
int sum(int v[], int n)
    if (n==0) return 0;
else return v[n-1]+sum(v, n-1);
```

Theorem: sum(v,n) correctly returns sum of $1^{\text {st }} \mathrm{n}$ elements of array v for any n .
Basis Step: Program is correct for $\mathrm{n}=0$; returns 0 . \&
Inductive Hypothesis ($\mathrm{n}=\mathrm{k}$): Assume sum(v, k) returns sum of first k elements of v.

Inductive Step ($\mathrm{n}=\mathrm{k}+1$): sum $(\mathrm{v}, \mathrm{k}+1)$ returns $\mathrm{v}[\mathrm{k}]+\operatorname{sum}(\mathrm{v}, \mathrm{k})$, which is the same of the first $k+1$ elements of v.

Inductive Proof (Binary Search)
If you know the closed form solution, you can validate it by ordinary induction

$T(1) ? b ? c \log 1 ? b$	base case
Assume $T(n) ? b ? c \log n$	hypothesis
$T(2 n) ? T(n) ? c$	definition of T(n)
$T(2 n) ?(b ? c \log n) ? c$	by induction hypothesis
$T(2 n) ? b ? c((\log n) ? 1)$	
$T(2 n) ? b ? c((\log n) ?(\log 2))$	
$T(2 n) ? b ? c \log (2 n)$	Q.E.D.
Thus: $T(n) ? ?(\log n)$	

Thus: $T(n) ? ?(\log n)$

To Do

- Continue Homework 1
- Due Monday, June 30 at 11 PM sharp!
- Bring questions to section tomorrow
- Sign up for 326 mailing list(s)
- Continue reading 1.1-1.3, Chapters 2 and 3 in the book
- Also start/skim on next sections: 4.1 (introduction to trees), and sections 6.1-6.4 (priority queues and binar heaps)

Asymptotic Analysis Summary

- Determine what characterizes a problem's size
- Express how much resources (time, memory, etc.) an algorithm requires as a function of input size using $\mathrm{O}(\bullet), ?(\bullet), ?(\bullet)$
- worst case
- best case
- average case
- common cas
- overall

[^0]: So ... which algorithm is best?
 What tradeoffs did you make?

