CSE 326: Data Structures
Topic #4
Putting Our Heaps Together

Luke McDowsell
Summer Quarter 2003

Outline

¢ Finish Binary Heaps
¢ D-heaps

o Leftist Heaps

¢ Skew Heaps

¢ Comparing Heaps

New Operation: Merge

Given two heaps, merge them into one heap

— first attempt: insert each element of the smaller heap
into the larger.

runtime:
— second attempt: concatenate heaps' arrays and run

buildHeap.
runtime:

How about O(log n) time?

Idea: Hang a New Tree

Now, just
percolate down!

Idea: Hang a New Tree

Leftist Heaps

o ldea
make it so that all the work you have to do in
maintaining a heap isin one small part
 Leftist heap:
— amost all nodes are on the left
— all the merging work is on the right




Random Definition:
Null Path Length

the null path length (npl) of a node is the number
of nodes between it and anull in the tree

e npl(null) =-1 (2
¢ npl(leaf) =0
« npl(single-child node) = 0 @ Q

@ @© © ©

another way of looking at it:
npl is the height of complete 01010
subtree rooted at this node

Leftist Heap Properties

¢ Heap-order property
— parent’s priority valueis ? to childrens' priority values
— result: minimum element is at the root

 Leftist property
— null path length of left subtreeis ? npl of right subtree
— result: treeis at least as“ heavy” on the left as the right

Are |eftist trees...
complete?
balanced?

Leftist tree examples

NOT leftist leftist leftist

Right Path in a Leftist Treeis Short (#1)

¢ Claim: The right path is as short as any in the tree
¢ Proof by contradiction: O
Shorter path: D1 < D2

X
o] O ®

. D2

Npl(right): ® ’.

Npl(left):

Right Path in a Leftist Treeis Short (#2)

¢ Claim: If the right path has length
at leastr, the tree has a
least 2" - 1 nodes

¢ Proof by induction

Basis;r = 1.Treehasatleastonenode: 2t - 1 = 1
Inductive step: assumetrueforr’ < r. Provefor treewithright path>=r.
1. Right subtree: right path of at leastr - 1 nodes & 2" - 1 - 1 subtree nodes
(induction)
2. Left subtree: alsoright path of at leastr - 1 & 2 - 1 - 1 subtree nodes
(induction + from the preceding theorem)
3. Root: % 1node
Total: 2-1- 1 +2"-1-1+1=2"-1
¢ S0, aleftist tree with at least n nodes has aright path of at
most | og n nodes

Merging Two Leftist Heaps

» merge(T,,T,) returns one leftist heap containing all
elements of the two (distinct) leftist heaps T, and T,

VANV AN




Merge Continued
(2) (2)

npl(R") > npl(L,)

ANV

R =Merge(R,, T,

Operations on Leftist Heaps

« merge with two trees of total size n: O(log n)
« insert with heap size n: O(log n)
— pretend node isasize 1 leftist heap
— insert by merging original heap with one node heap

VANNOR. VAN

¢ deleteMin with heap size n: O(log n)
— remove and return root
— merge left and right subtrees

LA DA™ A

Sewing Up the Example

0
5@“”’\0
W'

Done?

runtime:
Merge Example
3?
0 merge
Z 2
5
- ]
&o _, £ merge
o
@ @®
|
0
(special case) (8)
@'
Finally...

Iterative Leftist Merging

downward pass: merge right paths




Iterative Leftist Merging

upward pass: fix right path
oy @

What do we need to do
thisiteratively?

Random Definition:
Amortized Time

am-ortized time
Running time limit resulting from writing off expensive
runsof an algorithm over multiple cheap runsof the

algorithm, usually resulting in alower overall running time
than indicated by the worst possible case.

If M operations take total O(M log N) time,
amortized time per operation is O(log N)

Difference from average time:

Skew Heaps

« Problems with leftist heaps
— extrastorage for npl
— two pass merge (with stack!)
— extra complexity/logic to maintain and check npl
¢ Solution: skew heaps
— blind adjusting version of leftist heaps
— amortized time for merge, insert, and deleteMin is O(log n)
— worst case time for all three is O(n)
— merge always switches children when fixing right path
— iterative method has only one pass

Merging Two Skew Heaps

AA LA TA
AAT TAA

merge
=4

— _merge

Skew Heap Code

voi d nerge(heapl, heap2) {
case {

heapl == NULL: return heap2;

heap2 == NULL: return heapl;

heapl. findM n() < heap2. findMn():
temp = heapl.right;
heapl.right = heapl.left;
heapl.left = merge(heap2, tenp);
return heapl;

ot herw se:
return merge(heap2, heapl);




Comparing Heaps

« Binary Heaps ¢ Leftist Heaps

« d-Heaps « Skew Heaps

« Binomia Queues

To Do

¢ Continue homework #2

— Start early!

¢ Start chapter 4 in the book

Coming Up

¢ Dictionary ADT
¢ Self-Balancing Trees




