

Outline

- Finish Binary Heaps
- D-heaps
- Leftist Heaps
- Skew Heaps
- Comparing Heaps

New Operation: Merge

Given two heaps, merge them into one heap

- first attempt: insert each element of the smaller heap into the larger.
runtime:
- second attempt: concatenate heaps' arrays and run buildHeap.
runtime:

How about $\mathrm{O}(\log \mathrm{n})$ time?

Leftist Heaps

- Idea:
make it so that all the work you have to do in maintaining a heap is in one small part
- Leftist heap:
- almost all nodes are on the left
- all the merging work is on the right

Random Definition:

Null Path Length
the null path length (npl) of a node is the number of nodes between it and a null in the tree

- $\operatorname{npl}($ null $)=-1$
- $\operatorname{npl}($ leaf $)=0$
- $n p l($ single-child node $)=0$
another way of looking at it: npl is the height of complete subtree rooted at this node

Leftist Heap Properties

- Heap-order property
- parent's priority value is? to childrens' priority values
- result: minimum element is at the root
- Leftist property
- null path length of left subtree is? npl of right subtree
- result: tree is at least as "heavy" on the left as the right

Are leftist trees...
complete?
balanced?

Right Path in a Leftist Tree is Short (\#1)

- Claim: The right path is as short as any in the tree
- Proof by contradiction:

Shorter path: D1 < D2

Npl(left):

Npl(right):

Merging Two Leftist Heaps

- merge $\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ returns one leftist heap containing all elements of the two (distinct) leftist heaps T_{1} and T_{2}

Operations on Leftist Heaps

- merge with two trees of total size $\mathrm{n}: \mathrm{O}(\log \mathrm{n})$
- insert with heap size $\mathrm{n}: \mathrm{O}(\log \mathrm{n})$
- pretend node is a size 1 leftist heap
- insert by merging original heap with one node heap

$$
\triangle O_{\operatorname{monc}}^{\operatorname{mos} .} \triangle
$$

- deleteMin with heap size $\mathrm{n}: \mathrm{O}(\log \mathrm{n})$
- remove and return root
- merge left and right subtrees
O.

Sewing Up the Example

Finally...

Iterative Leftist Merging
downward pass: merge right paths

Random Definition:
 Amortized Time

am-or tized time
Running time limit resulting from writing off expensive runs of an algorithm over multiple cheap runs of the algorithm, usually resulting in a lower overall running time than indicated by the worst possible case.

If M operations take total $O(M \log N)$ time, amortized time per operation is $\mathrm{O}(\log \mathrm{N})$

Difference from average time:

Skew Heaps

- Problems with leftist heaps
- extra storage for npl
- two pass merge (with stack!)
- extra complexity/logic to maintain and check npl
- Solution: skew heaps
- blind adjusting version of leftist heaps
- amortized time for merge, insert, and deleteMin is $\mathrm{O}(\log \mathrm{n})$
- worst case time for all three is $\mathrm{O}(\mathrm{n})$
- merge always switches children when fixing right path
- iterative method has only one pass

Merging Two Skew Heaps

Skew Heap Code

void merge (heap1, heap2) \{
case f
heap1 == NULL: return heap2;
heap2 == NULL: return heap1;
heap1.findMin () < heap2.findMin ()
temp = heap1.right;
heap1.right $=$ heap1.left;
heap1.left $=$ merge (heap2, temp);
return heap 1;
otherwise:
return merge (heap2, heap1);
,

To Do

- Continue homework \#2
- Start early!
- Start chapter 4 in the book

