
CSE 326: Data Structures
Topic #4

Putting Our Heaps Together

Luke McDowell
Summer Quarter 2003

Outline

• Finish Binary Heaps
• D-heaps
• Leftist Heaps
• Skew Heaps
• Comparing Heaps

New Operation: Merge

Given two heaps, merge them into one heap
– first attempt: insert each element of the smaller heap

into the larger.
runtime:

– second attempt: concatenate heaps’ arrays and run
buildHeap.

runtime:

How about O(log n) time?

Idea: Hang a New Tree

1213106

115

2

+

1014

49

1

=

141213106

49115

12

?

10

Now, just
percolate down!

Idea: Hang a New Tree

1213106

115

2

+ =

1213106

1213106

115

2

1213106

Problem?

Leftist Heaps

• Idea:
make it so that all the work you have to do in
maintaining a heap is in one small part

• Leftist heap:
– almost all nodes are on the left
– all the merging work is on the right

the null path length (npl) of a node is the number
of nodes between it and a null in the tree

Random Definition:
Null Path Length

• npl(null) = -1
• npl(leaf) = 0
• npl(single-child node) = 0

000

001

11

2

another way of looking at it:
npl is the height of complete
subtree rooted at this node

0

Leftist Heap Properties

• Heap-order property
– parent’s priority value is ? to childrens’priority values
– result: minimum element is at the root

• Leftist property
– null path length of left subtree is ? npl of right subtree
– result: tree is at least as “heavy” on the left as the right

Are leftist trees…
complete?
balanced?

Leftist tree examples
NOT leftist leftist

00

001

11

2

0

0

000

11

2

1

000

0

0

0

0

0

1

0

leftist

0

every subtree of a leftist
tree is leftist, comrade!

Right Path in a Leftist Tree is Short (#1)

• Claim: The right path is as short as any in the tree
• Proof by contradiction:

Z

R

X

L

Y

D2
D1

Shorter path: D1 < D2

Npl(left):

Npl(right):

Right Path in a Leftist Tree is Short (#2)
• Claim: If the right path has length

at least r, the tree has at
least 2r - 1 nodes

• Proof by induction
Basis: r = 1. Tree has at least one node: 21 - 1 = 1
Inductive step: assume true for r’ < r. Prove for tree with right path >= r.
1. Right subtree: right path of at least r - 1 nodes ? 2r - 1 - 1 subtree nodes

(induction)
2. Left subtree: also right path of at least r - 1 ? 2r - 1 - 1 subtree nodes

(induction + from the preceding theorem)
3. Root: ? 1 node

Total: 2r - 1 - 1 + 2r - 1 - 1 + 1 = 2r - 1
• So, a leftist tree with at least n nodes has a right path of at

most log n nodes

0

000

11

2

1

00

Merging Two Leftist Heaps
• merge(T1,T2) returns one leftist heap containing all

elements of the two (distinct) leftist heaps T1 and T2

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1

Merge Continued

a

L1 R’

R’ = Merge(R1, T2)

a

R’ L1

npl(R’) > npl(L1)

runtime:

Operations on Leftist Heaps
• merge with two trees of total size n: O(log n)
• insert with heap size n: O(log n)

– pretend node is a size 1 leftist heap
– insert by merging original heap with one node heap

• deleteMin with heap size n: O(log n)
– remove and return root
– merge left and right subtrees

merge

merge

Merge Example

1210

5

87

3

14

1

0 0

1

0 0

0

merge

7

3

14

?

0

0

1210

5

8

1

0 0

0

merge

10

5
?

0 merge

12

8

0

0

8

12

0

0

(special case)

Sewing Up the Example

8

12

0

0

10

5
?

0

7

3

14

?

0

0

8

12

0

0

10

5
1

0

7

3

14

?

0

0
8

12

0

0

10

5 1

0

7

3

14

1

0

0

Done?

Finally…

8

12

0

0

10

5 1

0

7

3

14

1

0

0

7

3

14

1

0

0
8

12

0

0

10

5 1

0

Iterative Leftist Merging

1210

5

87

3

14

1

0 0

1

0 0

0

merge

downward pass: merge right paths

8

12

0

0

10

5 1

0

7

3

14

1

0

0

Iterative Leftist Merging
upward pass: fix right path

8

12

0

0

10

5 1

0

7

3

14

1

0

0
8

12

0

0

10

5 1

0

7

3

14

1

0

0
8

12

0

0

10

5 1

0

7

3

14

1

0

0

7

3

14

1

0

0
8

12

0

0

10

5 1

0

What do we need to do
this iteratively?

Random Definition:
Amortized Time

am·or·tized time
Running time limit resulting from writing off expensive
runs of an algorithm over multiple cheap runs of the
algorithm, usually resulting in a lower overall running time
than indicated by the worst possible case.

If M operations take total O(M log N) time,
amortized time per operation is O(log N)

Difference from average time:

Skew Heaps

• Problems with leftist heaps
– extra storage for npl
– two pass merge (with stack!)
– extra complexity/logic to maintain and check npl

• Solution: skew heaps
– blind adjusting version of leftist heaps
– amortized time for merge, insert, and deleteMin is O(log n)
– worst case time for all three is O(n)
– merge always switches children when fixing right path
– iterative method has only one pass

Merging Two Skew Heaps

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1

Example

1210

5

87

3

14

merge

7

3

14
1210

5

8

merge
7

3

1410

5

8

merge
12

7

3

14108

5

12

Skew Heap Code
void merge(heap1, heap2) {

case {
heap1 == NULL : return heap2;
heap2 == NULL : return heap1;
heap1.findMin() < heap2. findMin():

temp = heap1.right;
heap1.right = heap1.left;
heap1.left = merge(heap2, temp);
return heap1;

otherwise :
return merge(heap2, heap1);

}
}

Comparing Heaps

• Binary Heaps

• d-Heaps

• Binomial Queues

• Leftist Heaps

• Skew Heaps

To Do

• Continue homework #2
– Start early!

• Start chapter 4 in the book

Coming Up

• Dictionary ADT
• Self-Balancing Trees

