CSE 326: Data Structures
Topic #5
Branching Out

Luke McDowsell
Summer Quarter 2003

Today’s Outline

¢ Homework #3 Intro
Some Tree Review

« Binary Trees
Dictionary ADT / Search ADT
¢ Binary Search Trees

Tree Calculations

Find the height of the tree...

Runtime:

Tree Calculations Example

More Recursive Tree Calculations:
Traversals

« A traversal isan order for
visiting al the nodes of atree
¢ Threetypes: (D)
— Pre-order
« Root, |eft subtree, right subtree ° e
— In-order
« Left subtree, root, right subtree 9 e
— Post-order

- Left subtree, right subtree, root An expression tree

Binary Trees
Binary treeis
— aroot
— left subtree (maybe empty) 0
— right subtree (maybe empty)
For tree of depth d: (B) (©
— max # of leaves:
©® G 6
— max # of nodes:
. @ O

Representation:

Data OO

left | right
pointer | pointer

Representation

A

left |right o

pointepoint

. ® ©
® ®0

Teft [rignt
intepoint

A Few More Trees

® ® Q
& ® ©
I\ I\ © OO ©

Left Subtree Right Subtree

® ® OV
® © ® ©
©EE © ®&E ©

Complete Tree Perfect Tree

What We Can Do So Far

« Stack e List
— Push — Insert
— Pop — Remove
« Queue — Find
- Enqueue Priority Queue
— Dequeue — Insert
— DeleteMin

Remember decreaseKey?

weN The Dictionary ADT

o . ¢ lucasm
 Dictionary ADT: — Lucas Kelsey McDowell,
— Maps values to user- . your favorite 5th year grad
e insert student who needs help
_ Imsert
specified keys « teved@u with Hollywood trivia
— Or: aset Qf (key, - akastevaroo . sevaroo
value) pairs — Steven Loyd Martin, a
« Keysmay be any recently graduated CSE
(homogeneous) type . ugrad who's destined fpr
find(erbad 5
« Values may be any great things at Berkeley
(homogeneous) type ~ * €bad + erbad
N - Aiman Erbad, the — Aiman Mahmood Erbad,
* Operations: the man with the
— Insert (key, value) mysterious accent and real
X ! name that is even longer
— Find (key)

— Remove (ki
(key) The Dictionary ADT is sometimes
called the* Map ADT"

et

nN®™ " The Search ADT

¢ Search ADT:
— Contains unigue user- . Ry
specified keys insert e Simmer
— Or: aset of keys * Grill * Puree
« Keysmay be any ¢ Braise
(homogeneous) type « Poach
¢ Operations:) . Sear
~ Insert (key) (B gjipgry
— Find (key) NOT FOUND Puree
« Checks for membership
— Remove (key)

The Search ADT is sometimes
called the® Set ADT”

A Modest Few Uses

e Arrays

e Sets

« Dictionaries
Router tables
¢ Pagetables
Symbol tables

Naive Implementations

insert find delete

¢ Unsorted Linked list
¢ Unsorted array

« Sorted array

What limits the performance?

Binary Search Tree
Dictionary Data Structure

Binary tree property
— each node has ? 2 children
— result:
« storageissmall
« operations are simple
 average depthissmall
« Search tree property
— all keysin left subtree smaller
than root’s key
— all keysin right subtree larger
than root’s key
— result: easy to find any given key
* What must | know about what | store?

Example and Counter-Example

BINARY SEARCH TREE NOT A
BINARY SEARCH TREE

Finding a Node

Node Fi nd(Chject key,

Node root) {
if (root == NULL)
return NULL;

if (key < root.key)
return Find(key,
root.left);
else if (key > root.key)
return Find(key,
root.right);

Runtime: el se
return root;

Iterative Find

Node Fi nd(Chject key,
Node root) {

while (root !'= NULL &%
root. key !'= key) {
if (key < root.key)
root = root.left;
el se
root = root.right;

}

return root;

}

Why It'sCalled a
“Binary Search Treg’

[2] 5] 7] 9]10[15] 17]20] 20]

Runtime:

BuildTreefor BSTs

¢ Supposethedatal, 2, 3, 4,5, 6, 7, 8, 9 isinserted
into an initially empty BST:
— in order

— in reverse order

— median first, then left median, right median, etc.

Analysis of BuildTree

* Worgt case: O(n?) as we' ve seen
¢ Average case assuming al orderings equally likely:
— Sum of al depths:
« D(N) =D(l) +D(N=1-1)+(N-1)

— Average depth of anode:

— Total runtime:

Bonus; FindMin/FindMax

¢ Find minimum

¢ Find maximum

Deletion

Why might deletion be harder than insertion?

Lazy Deletion

« Instead of physically deleting
nodes, just mark them as
deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

— many lazy deletions slow finds

— some operations may have to be
modified (e.g., min and max)

Lazy Deletion

Delete(17)
Delete(15)
Delete(5)

Find(9)

Find(16)
Insert(5)

Find(17)

Deletion - Leaf Case

Delete(17)

Deletion - One Child Case

Delete(15)

Deletion - Two Child Case

Delete(5)

Thinking about
Binary Search Trees

¢ Observations
— Each operation views two new elements at atime
— Elements (even siblings) may be scattered in memory
— Binary search trees are fast if they' re shallow
* Redlities
— For large data sets, disk accesses dominate runtime
— Some deep and some shallow BSTs exist for any data

Solutions?

¢ Keep BSTsshalow?

* Reduce disk accesses even for shallow tree?

¢ Start Homework 3
— Find a partner

To Do

« Read chapter 4 in the book

Coming Up

¢ A bit more Binary Search Trees
¢ Self-balancing Binary Search Trees
¢ Huge Search Tree Data Structure

