
CSE 326: Data Structures
Topic #5

Branching Out

Luke McDowell
Summer Quarter 2003

Today’s Outline

• Homework #3 Intro
• Some Tree Review
• Binary Trees
• Dictionary ADT / Search ADT
• Binary Search Trees

Tree Calculations
Find the height of the tree... t

Runtime:

Tree Calculations Example
A

E

B

D F

C

G

IH

KJ L

M

L

N

More Recursive Tree Calculations:
Traversals

• A traversal is an order for
visiting all the nodes of a tree

• Three types:
– Pre-order

• Root, left subtree, right subtree

– In-order
• Left subtree, root, right subtree

– Post-order
• Left subtree, right subtree, root

+

*

2 4

5

An expression tree

Binary Trees
• Binary tree is

– a root
– left subtree (maybe empty)
– right subtree (maybe empty)

• For tree of depth d:
– max # of leaves:

– max # of nodes:

• Representation:

A

B

D E

C

F

HG

JIData
right

pointer
left

pointer

Representation
A

right
pointer

left
pointer

A

B

D E

C

F

B
right

pointer
left

pointer

C
right

pointer
left

pointer

D
right

pointer
left

pointer

E
right

pointer
left

pointer

F
right

pointer
left

pointer

A Few More Trees
A

B

D E

C

GF

IH
A

B

D E

C

F

A

B

D E

C

GF

A

B

A

B

Left Subtree Right Subtree

Full Tree

Complete Tree Perfect Tree

What We Can Do So Far

• Stack
– Push
– Pop

• Queue
– Enqueue
– Dequeue

Remember decreaseKey?

• List
– Insert
– Remove
– Find

• Priority Queue
– Insert
– DeleteMin

The Dictionary ADT

• Dictionary ADT:
– Maps values to user-

specified keys
– Or: a set of (key,

value) pairs
• Keys may be any

(homogeneous) type
• Values may be any

(homogeneous) type

• Operations:
– Insert (key, value)
– Find (key)
– Remove (key)

The Dictionary ADT is sometimes
called the “Map ADT”

New!

• lucasm
– Lucas Kelsey McDowell,

your favorite 5th year grad
student who needs help
with Hollywood trivia

• stevaroo
– Steven Loyd Martin, a

recently graduated CSE
ugrad who’s destined fpr
great things at Berkeley

• erbad
– Aiman Mahmood Erbad,

the man with the
mysterious accent and real
name that is even longer

insert

find(erbad)

•steve0@u
- aka stevaroo…

•erbad
- Aiman Erbad, the …

The Search ADT
• Search ADT:

– Contains unique user-
specified keys

– Or: a set of keys
• Keys may be any

(homogeneous) type

• Operations:
– Insert (key)
– Find (key)

• Checks for membership
– Remove (key)

• Fry
• Simmer
• Puree
• Braise
• Poach
• Sear
• Stirfry
• Puree

insert

find(Bake)

•Grill

NOT FOUND

The Search ADT is sometimes
called the “Set ADT”

Also New!
A Modest Few Uses

• Arrays
• Sets
• Dictionaries
• Router tables
• Page tables
• Symbol tables

Naïve Implementations

• Unsorted Linked list

• Unsorted array

• Sorted array

insert deletefind

What limits the performance?

Binary Search Tree
Dictionary Data Structure

4

121062

115

8

14

13

7 9

• Binary tree property
– each node has ? 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Search tree property
– all keys in left subtree smaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

• What must I know about what I store?

Example and Counter-Example

3

1171

84

15

4

181062

115

8

20

21BINARY SEARCH TREE NOT A
BINARY SEARCH TREE

7

15

Finding a Node

Node Find(Object key,
Node root) {

if (root == NULL)
return NULL;

if (key < root.key)
return Find(key,

root.left);
else if (key > root.key)

return Find(key,
root.right);

else
return root;

}

2092

155

10

307 17

Runtime:

Iterative Find
Node Find(Object key,

Node root) {

while (root != NULL &&
root.key != key) {

if (key < root.key)
root = root.left;

else
root = root.right;

}

return root;
}

2092

155

10

307 17

Why It’s Called a
“Binary Search Tree”

2 5 7 9 10 15 17 20 30

Insert

2092

155

10

307 17

Runtime:

BuildTree for BSTs

• Suppose the data 1, 2, 3, 4, 5, 6, 7, 8, 9 is inserted
into an initially empty BST:
– in order

– in reverse order

– median first, then left median, right median, etc.

Analysis of BuildTree

• Worst case: O(n2) as we’ve seen
• Average case assuming all orderings equally likely:

– Sum of all depths:
• D(N) = D(I) + D(N – I – 1) + (N – 1)

=

– Average depth of a node:

– Total runtime:

Bonus: FindMin/FindMax

• Find minimum

• Find maximum 2092

155

10

307 17

Deletion

2092

155

10

307 17

Why might deletion be harder than insertion?

Lazy Deletion

• Instead of physically deleting
nodes, just mark them as
deleted
+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag
– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to be

modified (e.g., min and max)

2092

155

10

307 17

Lazy Deletion

2092

155

10

307 17

Delete(17)

Delete(15)

Delete(5)

Find(9)

Find(16)

Insert(5)

Find(17)

Deletion - Leaf Case

2092

155

10

307 17

Delete(17)

Deletion - One Child Case

2092

155

10

307

Delete(15)

Deletion - Two Child Case

3092

205

10

7

Delete(5)

Finally…

3092

207

10

Thinking about
Binary Search Trees

• Observations
– Each operation views two new elements at a time
– Elements (even siblings) may be scattered in memory
– Binary search trees are fast if they’re shallow

• Realities
– For large data sets, disk accesses dominate runtime
– Some deep and some shallow BSTs exist for any data

Solutions?

• Keep BSTs shallow?

• Reduce disk accesses even for shallow tree?

To Do

• Start Homework 3
– Find a partner

• Read chapter 4 in the book

Coming Up

• A bit more Binary Search Trees
• Self-balancing Binary Search Trees
• Huge Search Tree Data Structure

