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Today’s Outline

• Homework #3 Intro
• Some Tree Review
• Binary Trees
• Dictionary ADT / Search ADT
• Binary Search Trees

Tree Calculations
Find the height of the tree... t

Runtime:

Tree Calculations Example
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More Recursive Tree Calculations:
Traversals

• A traversal is an order for 
visiting all the nodes of a tree

• Three types:
– Pre-order

• Root, left subtree, right subtree

– In-order
• Left subtree, root, right subtree

– Post-order
• Left subtree, right subtree, root
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An expression tree

Binary Trees
• Binary tree is

– a root
– left subtree (maybe empty) 
– right subtree (maybe empty) 

• For tree of depth d:
– max # of leaves: 

– max # of nodes:

• Representation:
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A Few More Trees
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What We Can Do So Far

• Stack
– Push
– Pop

• Queue
– Enqueue
– Dequeue

Remember decreaseKey?

• List
– Insert
– Remove
– Find

• Priority Queue
– Insert
– DeleteMin

The Dictionary ADT

• Dictionary ADT:
– Maps values to user-

specified keys
– Or: a set of (key, 

value) pairs
• Keys may be any 

(homogeneous) type
• Values may be any 

(homogeneous) type

• Operations:
– Insert (key, value)
– Find (key)
– Remove (key)

The Dictionary ADT is sometimes 
called the “Map ADT”

New!

• lucasm
– Lucas Kelsey McDowell, 

your favorite 5th year grad 
student who needs help 
with Hollywood trivia

• stevaroo
– Steven Loyd Martin, a 

recently graduated CSE
ugrad who’s destined fpr 
great things at Berkeley

• erbad
– Aiman Mahmood Erbad, 

the man with the 
mysterious accent and real 
name that is even longer

insert

find(erbad)

•steve0@u 
- aka stevaroo…

•erbad
- Aiman Erbad, the …

The Search ADT
• Search ADT:

– Contains unique user-
specified keys

– Or: a set of keys
• Keys may be any 

(homogeneous) type

• Operations:
– Insert (key)
– Find (key)

• Checks for membership
– Remove (key)

• Fry
• Simmer
• Puree
• Braise
• Poach
• Sear
• Stirfry
• Puree

insert

find(Bake)

•Grill

NOT FOUND

The Search ADT is sometimes 
called the “Set ADT”

Also New!
A Modest Few Uses

• Arrays  
• Sets
• Dictionaries
• Router tables
• Page tables
• Symbol tables



Naïve Implementations

• Unsorted Linked list

• Unsorted array

• Sorted array

insert deletefind

What limits the performance?

Binary Search Tree 
Dictionary Data Structure
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• Binary tree property
– each node has ? 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Search tree property
– all keys in left subtree smaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

• What must I know about what I store?

Example and Counter-Example
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Finding a Node

Node Find(Object key,
Node root) {

if (root == NULL)
return NULL;

if (key < root.key)
return Find(key,

root.left);
else if (key > root.key)

return Find(key,
root.right);

else
return root;

}
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Runtime:

Iterative Find
Node Find(Object key,

Node root) {

while (root != NULL &&
root.key != key) {

if (key < root.key)
root = root.left;

else 
root = root.right;

}

return root;
}
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Why It’s Called a 
“Binary Search Tree”
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Insert
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Runtime:

BuildTree for BSTs

• Suppose the data 1, 2, 3, 4, 5, 6, 7, 8, 9 is inserted 
into an initially empty BST:
– in order

– in reverse order

– median first, then left median, right median, etc. 

Analysis of BuildTree

• Worst case: O(n2) as we’ve seen
• Average case assuming all orderings equally likely:

– Sum of all depths:
• D(N)  = D(I)  + D(N – I – 1) + (N – 1)

= 

– Average depth of a node:

– Total runtime:

Bonus: FindMin/FindMax

• Find minimum

• Find maximum 2092
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Deletion
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Why might deletion be harder than insertion?

Lazy Deletion

• Instead of physically deleting 
nodes, just mark them as 
deleted
+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag
– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to be 

modified (e.g., min and max)
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Lazy Deletion
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Delete(17)

Delete(15)

Delete(5)

Find(9)

Find(16)

Insert(5)

Find(17)

Deletion - Leaf Case
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Delete(17)

Deletion - One Child Case
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Delete(15)

Deletion - Two Child Case
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Delete(5)

Finally…  
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Thinking about 
Binary Search Trees

• Observations
– Each operation views two new elements at a time
– Elements (even siblings) may be scattered in memory
– Binary search trees are fast if they’re shallow

• Realities
– For large data sets, disk accesses dominate runtime
– Some deep and some shallow BSTs exist for any data



Solutions?

• Keep BSTs shallow? 

• Reduce disk accesses even for shallow tree?

To Do

• Start Homework 3
– Find a partner 

• Read chapter 4 in the book

Coming Up

• A bit more Binary Search Trees
• Self-balancing Binary Search Trees
• Huge Search Tree Data Structure


