
CSE 326: Data Structures
Topic 8: Big, Bad B-Trees

Luke McDowell
Summer Quarter 2003

Something We Forgot: Disk Acesses

We Want To Minimize Disk Accesses!

1024 bytes

•Entire blocks transferred
into memory at a time
•Transfer time much less
than seek time
•Therefore we need to
minimize disk accesses!

Disk access time =
Seek time

+
Transfer time

M-ary Search Tree

• Maximum branching
factor of M

• Complete tree has
depth = logMN

runtime:

Problems with M-ary Search Trees
B-Trees

• B-Trees are specialized M-ary
search trees

• Each node has many keys (max M-1)
– subtree between two keys x and y

contains leaves with values v such that
x ? v < y

– binary search within a node
to find correct subtree

• Each node takes one
full {page, block}
of memory

3 7 12 21

x<3 3? x<7 7? x<12 12? x<21 21? x

Example

B-Tree with M = 4
and L = 4

1 2

3 5 6 9

10 11 12

15 17

20 25 26

30 32 33 36

40 42

50 60 70

10 40

3 15 20 30 50

B-Tree Properties‡

• Properties
– maximum branching factor of M
– the root has between 2 and M children or at most L keys
– other internal nodes have between ?M/2? and M children
– internal nodes contain only search keys (no data)
– All values are stored at the leaves
– smallest datum between search keys x and y equals x
– each (non-root) leaf contains between ?L/2? and L keys
– all leaves are at the same depth

‡These are technically B+-Trees

B-Tree Properties
• Properties

– maximum branching factor of M
– the root has between 2 and M children or at most L keys
– other internal nodes have between ?M/2? and M children
– internal nodes contain only search keys (no values)
– All values are stored at the leaves
– smallest datum between search keys x and y equals x
– each (non-root) leaf contains between ?L/2? and L keys
– all leaves are at the same depth

B-Tree Properties
• Properties

– maximum branching factor of M
– the root has between 2 and M children or at most L keys
– other internal nodes have between ?M/2? and M children
– internal nodes contain only search keys (no data)
– All values are stored at the leaves
– smallest datum between search keys x and y equals x
– each (non-root) leaf contains between ?L/2? and L keys
– all leaves are at the same depth

B-Tree Properties
• Properties

– maximum branching factor of M
– the root has between 2 and M children or at most L keys
– other internal nodes have between ?M/2? and M children
– internal nodes contain only search keys (no data)
– All values are stored at the leaves
– smallest datum between search keys x and y equals x
– each (non-root) leaf contains between ?L/2? and L keys
– all leaves are at the same depth

• Result
– tree is ? (logM n) deep
– all operations run in ? (logM n) time
– operations pull in about M/2 or L/2 items at a time

…__ __k1 k2 … ki

B-Tree Nodes

• Internal node
– i search keys; i+1 subtrees; M - i - 1 inactive entries

• Leaf
– j values; L - j inactive entries

k1 k2 … kj
…__ __

1 2 M - 1

1 2 L

i

j

Example Redux

B-Tree with M = 4
and L = 4

1 2

3 5 6 9

10 11 12

15 17

20 25 26

30 32 33 36

40 42

50 60 70

10 40

3 15 20 30 50

Making a B-Tree

The empty
B-Tree

M = 3 L = 2

3
Insert(3)

3 14
Insert(14)

Now, Insert(1)?

Splitting the Root

And create
a new root

1 3 14

1 3 14

14

1 3 14
3 14

Insert(1)

Too many
keys in a leaf!

So, split the leaf.

Insertions and Split Ends

Insert(59)
14

1 3 14 59

14

1 3 14

Insert(26)

14

1 3 14 26 59

14 26 59

14 59

1 3 14 26 59

And add
a new child

Too many
keys in a leaf!

So, split the leaf.

Propagating Splits

14 59

1 3 14 26 59

14 59

1 3 14 26 595

1 3 5

Insert(5)

5 14

14 26 591 3 5

59

5 595

1 3 5 14 26 59

59

14

Add new
child

Create a
new root

Too many keys in an internal node!

So, split the node.

Insertion in Boring Text

• Insert the key in its leaf
• If the leaf ends up with L+1

items, overflow!
– Split the leaf into two nodes:

• original with ??(L+1)/2? items
• new one with ?(L+1)/2? items

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

• If an internal node ends up
with M+1 items, overflow!
– Split the node into two nodes:

• original with ??(M+1)/2? items
• new one with ?(M+1)/2? items

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

• Split an overflowed root in two
and hang the new nodes under
a new root

This makes the tree deeper!

After More Routine Inserts

5

1 3 5 14 26 59

59

14

5

1 3 5 14 26 59 79

59 89

14

89

Insert(89)
Insert(79)

Deletion

5

1 3 5 14 26 59 79

59 89

14

89

5

1 3 5 14 26 79

79 89

14

89

Delete(59)

What could go wrong?

Deletion and Adoption

5

1 3 5 14 26 79

79 89

14

89

Delete(5)
?

1 3 14 26 79

79 89

14

89

3

1 3 3 14 26 79

79 89

14

89

A leaf has too few keys!

So, borrow from a neighbor

Deletion with Propagation

3

1 3 14 26 79

79 89

14

89

Delete(3)
?

1 14 26 79

79 89

14

89

1 14 26 79

79 89

14

89

A leaf has too few keys!

And no neighbor with surplus!

So, delete
the leaf

But now a node
has too few subtrees!

Adopt a
neighbor

1 14 26 79

79 89

14

89

14

1 14 26 79

89

79

89

Finishing the Propagation
(More Adoption)

Delete(1)
(adopt a

neighbor)

14

1 14 26 79

89

79

89

A Bit More Adoption

26

14 26 79

89

79

89

Delete(26)
26

14 26 79

89

79

89

Pulling out the Root

14 79

89

79

89

A leaf has too few keys!
And no neighbor with surplus!

14 79

89

79

89

So, delete
the leaf

A node has too few subtrees
and no neighbor with surplus!

14 79

79 89

89

Delete
the node

But now the root
has just one subtree!

Pulling out the Root (continued)

14 79

79 89

89

The root
has just one subtree!

But that’s silly!

14 79

79 89

89

Just make
the one child
the new root!

Deletion in Two
Boring Slides of Text

• Remove the key from its leaf
• If the leaf ends up with fewer

than ?L/2? items, underflow!
– Adopt data from a neighbor;

update the parent
– If borrowing won’t work, delete

node and divide keys between
neighbors

– If the parent ends up with fewer
than ?M/2? items, underflow!

Why will dumping keys
always work if borrowing
doesn’t?

Deletion Slide Two

• If a node ends up with fewer
than ?M/2? items, underflow!
– Adopt subtrees from a neighbor;

update the parent
– If borrowing won’t work, delete

node and divide subtrees
between neighbors

– If the parent ends up with fewer
than ?M/2? items, underflow!

• If the root ends up with only
one child, make the child the
new root of the tree

This reduces the height of
the tree!

B-trees vs AVL trees
We have a database* with 100 million items (100,000,000):

• Depth of AVL Tree

• Depth of B+ Tree with B = 128, L = 64

* A very simple type of database, called
“Berkeley Database” is basically a B+-tree

Thinking about B-Trees
• B-Tree insertion can cause (expensive) splitting

and propagation
• B-Tree deletion can cause (cheap) borrowing or

(expensive) deletion and propagation
• Propagation is rare if M and L are large

(Why?)
• Repeated insertions and deletion can cause

thrashing
• If M = L = 128, then a B-Tree of height 4 will

store at least 30,000,000 items

A Tree with Any Other Name

FYI:
– B-Trees with M = 3, L = x are called 2-3 trees

• Nodes can have 2 or 3 keys

– B-Trees with M = 4, L = x are called 2-3-4 trees
• Nodes can have 2, 3, or 4 keys

Why would we ever use these?

To Do

• Finish Homework #3
– Don’t forget contest submission!

• Read Chapter 5

