

- maximum branching factor of M
- the root has between 2 and **M** children or at most **L** keys
- other internal nodes have between $\frac{M}{2?}$ and M children
- internal nodes contain only search keys (no data)
- All values are stored at the leaves
- smallest datum between search keys *x* and *y* equals *x*
- each (non-root) leaf contains between 2L/2? and L keys
- all leaves are at the same depth

[‡]These are technically B⁺-Trees

B-Tree Properties

- · Properties
 - maximum branching factor of M
 - the root has between 2 and *M* children *or* at most *L* keys
 - other internal nodes have between 2M/2? and M children
 - internal nodes contain only search keys (no values)
 - All values are stored at the leaves
 - smallest datum between search keys x and y equals x
 - each (non-root) leaf contains between 2L/2? and L keys
 - all leaves are at the same depth

B-Tree Properties

Properties

- $-\,$ maximum branching factor of M
- the root has between 2 and M children or at most L keys
- other internal nodes have between M/2? and M children
- internal nodes contain only search keys (no data)
- All values are stored at the leaves
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between ?L/2? and L keys
- all leaves are at the same depth

B-Tree Properties

• Properties

- maximum branching factor of M
- the root has between 2 and M children or at most L keys
- other internal nodes have between 2M/2 and M children
- internal nodes contain only search keys (no data)
- All values are stored at the leaves
- smallest datum between search keys *x* and *y* equals *x*
- each (non-root) leaf contains between ?L/2? and L keys
 all leaves are at the same depth

• Result

tree is ? (log_M n) deep
all operations run in ? (log_M n) time
operations pull in about M/2 or L/2 items at a time

A Tree with Any Other Name

FYI:

- B-Trees with M = 3, L = x are called 2-3 trees
 Nodes can have 2 or 3 keys
- B-Trees with M = 4, L = x are called 2-3-4 trees
 - Nodes can have 2, 3, or 4 keys

Why would we ever use these?

To Do

- Finish Homework #3
 Don't forget contest submission!
- Read Chapter 5