

Something We Forgot: Disk Acesses

M-ary Search Tree

- Maximum branching factor of \boldsymbol{M}
- Complete tree has depth $=\log _{N_{N}} \mathbf{N}$

runtime:

Problems with M-ary Search Trees

B-Trees

- B-Trees are specialized M-ary search trees
- Each node has many keys (max M-1)
- subtree between two keys x and y
contains leaves with values v such that $\begin{array}{ll}3 / 7 \mid 1221 & \square\end{array}$
$x ? v<y$
- binary search within a node to find correct subtree
- Each node takes one full $\{$ page, block $\}$ of memory

B-Tree Properties ${ }^{*}$

- Properties
- maximum branching factor of \boldsymbol{M}
- the root has between 2 and \boldsymbol{M} children $o r$ at most \boldsymbol{L} keys
- other internal nodes have between ?M/2? and M children
- internal nodes contain only search keys (no data)
- All values are stored at the leaves
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between ? $L / 2$? and L keys
- all leaves are at the same depth

B-Tree Properties

- Properties
maximum branching factor of M
- the root has between 2 and M children or at most L keys

B-Tree Properties

- Properties
- maximum branching factor of M
- the root has between 2 and M children or at most L keys
- other internal nodes have between ? $\boldsymbol{M} / \mathbf{2}$? and \boldsymbol{M} children
- other internal nodes have between ? $M / 2$? and M children
- internal nodes contain only search keys (no values)
- internal nodes contain only search keys (no data
- All values are stored at the leaves
- smallest datum between search keys x and y equals x
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between ? $\mathbf{L} / \mathbf{2}$? and \boldsymbol{L} keys
- all leaves are at the same depth
- each (non-root) leaf contains between ?L/2? and L keys
- all leaves are at the same depth

B-Tree Properties

- Properties
- maximum branching factor of M
- the root has between 2 and M children or at most L keys
other internal nodes have between ? $M / 2$? and M children
- internal nodes contain only search keys (no data)
- All values are stored at the leaves
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between ? $L / 2$? and L keys all leaves are at the same depth
- Result
- tree is? $\left(\log _{M} \mathbf{n}\right)$ deep
- all operations run in? $\left(\log _{M} n\right)$ time
- operations pull in about $M / 2$ or $L / 2$ items at a time

B-Tree Nodes

- Internal node
- \mathbf{i} search keys; $\mathbf{i + 1}$ subtrees; \boldsymbol{M} - \mathbf{i} - $\mathbf{1}$ inactive entries

- Leaf
- \mathbf{j} values; \boldsymbol{L} - \mathbf{j} inactive entries

Finishing the Propagation
(More Adoption)

$\xrightarrow{\text { Adopt a }}$
neighbor

Pulling out the Root (continued)
The root

Deletion in Two
Boring Slides of Text

- Remove the key from its leaf
- If the leaf ends up with fewer than ? $\mathbf{L} / 2$? items, underflow!

Adopt data from a neighbor
pdate the paren
ond divid 't work, delet ide keys between

- If the parent ends up with fewer

Why will dumping keys always work if borrowing doesn't?
than ?M/2? items, underflow!

Deletion Slide Two

- If a node ends up with fewer
than ? $\mathbf{m} / 2$? items, underflow
- Adopt subtrees from a neighbor update the parent
If borrowing won't work, delete
node and divide subtrees
between neighbors
If the parent ends up with fewer han ? $\mathrm{M} / 2$? items, underflow

This reduces the height of one child, make the child the new root of the tree \qquad the tree
\qquad tree!

B-trees vs AVL trees

We have a database* with 100 million items ($100,000,000$):

- Depth of AVL Tree
- Depth of B+ Tree with B $=128, \mathrm{~L}=64$

Thinking about B-Trees

- B-Tree insertion can cause (expensive) splitting and propagation
- B-Tree deletion can cause (cheap) borrowing or (expensive) deletion and propagation
- Propagation is rare if \boldsymbol{M} and \boldsymbol{L} are large
- Repeated insertions and deletion can cause thrashing
- If $\boldsymbol{M}=\boldsymbol{L}=\mathbf{1 2 8}$, then a B-Tree of height 4 will store at least $30,000,000$ items

To Do

- Finish Homework \#3
- Don't forget contest submission!
- Read Chapter 5

