

Implementations So Far			
	${ }^{\text {inerr }}$	${ }^{\text {find }}$	detee
- Unsored list	${ }^{\text {O(1) }}$	$O_{(m)}$	${ }^{\text {On }}$ (
- Sored list			
- Trees	$\mathrm{O}_{\text {(log n) }}$	O(log n)	
Hovatow (c) in inerrif			

A Good Hash Function...

..is easy (fast) to compute ($\mathrm{O}(1)$ and practically fast).
...distributes the data evenly (hash(a) \% size ? hash(b) \% size).
... uses the whole hash table (for all 0 ? k < size, there's an i such that hash(i) $\%$ size = k).

Good Hash Function for Integers

- Choose
- tableSize is prime
$-\operatorname{hash}(\mathrm{n})=\mathrm{n}$
- Example:
- tableSize $=7$
insert(4)
insert(17)
find(12)
insert(9)
delete(17)

Collisions

- Pigeonhole principle says we can't avoid all collisions
- try to hash without collision m keys into n slots with $m>n$
- e.g., try to put 7 pigeons into 5 holes

- What do we do when two keys hash to the same entry?
- Separate chaining: put little dictionaries in each entry
${ }^{4}$ shove extra pigeons in one hole!
- Open addressing: pick a next entry to try
- Frequency depends on load factor
load factor $?=\frac{\text { \# of entries in table }}{\text { tableSize }}$

Load Factor in Separate Chaining

- Search cost
- unsuccessful search:
- successful search:
- Desired load factor:

Open Addressing

What if we only allow one Key at each entry?

- two objects that hash to the same spot can't both go there
- first one there gets the spot
- next one must probe for another spot
- Properties
- ? ? 1
- performance degrades with difficulty of finding right spot

Probing

- Probing how to:
- First probe - given a key k, hash to h(k)
- Second probe - if $h(k)$ is occupied, $\operatorname{try} h(k)+f(1)$
- Third probe - if $h(k)+f(1)$ is occupied, try $h(k)+f(2)$ - And so forth
- Probing properties
- we force $f(0)=0$
- the $i^{\text {th }}$ probe is to $(h(k)+f(i))$ mod size
- When does the probe fail?
- Does that mean the table is full?

Linear Probing Example

Load Factor in Linear Probing

- For any ? < 1 , linear probing will find an empty slot
- Search cost (for large table sizes)
- successful search:

$$
\left.\frac{1}{2}\right\}
$$

- unsuccessful search:

$$
\left.\frac{1}{2}\right\}_{1}^{2} ? \frac{1}{?!? ?}{ }^{3} ?
$$

- Linear probing suffers from primary clustering
- Performance quickly degrades for ? > $1 / 2$

Quadratic Probing Example

insert(76)	insert(40) $76 \% 7=6$	insert(48) $40 \% 7=5$	insert(5) $5 \% 7=5$	insert(55) $55 \% 7=6$
0				
1				

Quadratic Probing Succeeds

(for ? < $1 / 2$)

- If size is prime and ? $<1 / 2$, then quadratic probing will find an empty slot in size/2 probes or fewer.
- show for all 0 ? i, j ? size/2 and i ? j
$\left(\mathrm{h}(\mathrm{x})+\mathrm{i}^{2}\right.$) mod size ? ($\mathrm{h}(\mathrm{x})+\mathrm{j}^{2}$) mod size
- by contradiction: suppose that for some i ? j :
$\left(h(x)+i^{2}\right) \bmod$ size $=\left(h(x)+j^{2}\right) \bmod$ size
$i^{2} \bmod$ size $=j^{2} \bmod$ size
$\left(\mathrm{i}^{2}-\mathrm{j}^{2}\right)$ mod size $=0$
$[(i+j)(i-j)] \bmod$ size $=0$
- but how can $i+j=0$ or $i+j=s i z e$ when
i ? jand $\mathbf{i , j}$? size/2?
- same for $i-j \bmod$ size $=0$

Double Hashing
 $\mathrm{f}(\mathrm{i})=\mathrm{i}$? $\mathrm{hash}_{2}(\mathrm{x})$

- Probe sequence is
$-h_{1}(k) \quad \bmod$ size
$-\left(h_{1}(k)+1 ? h_{2}(x)\right)$ mod size
$-\left(h_{1}(k)+2 ? h_{2}(x)\right)$ mod size
- Goal?

Load Factor in Quadratic Probing

- For any? < $1 / 2$, quadratic probing will find an empty slot; for greater ?, quadratic probing may find a slot
- Quadratic probing does not suffer from primary clustering
- But what about keys that hash to the same spot?

A Good Double Hash Function...

... is quick to evaluate.
...differs from the original hash function.
...never evaluates to 0 (mod size).

One good choice is to choose a prime $\mathrm{R}<$ size and: $\operatorname{hash}_{2}(\mathrm{x})=\mathrm{R}-(\mathrm{x} \bmod \mathrm{R})$

Deletion with Open Addressing

insert(7)	
00	
11	
22	
3	
4	
5	
6	

- Solution?
- An insert using open addressing cannot work with a load factor of 1 or more.
- An insert using open addressing with quadratic probing may not work with a load factor of $1 / 2$ or more.
- Whether you use separate chaining or open addressing, large load factors lead to poor performance!
- How can we relieve the pressure on the pigeons?
with a

Rehashing

- When the load factor gets "too large" (over a constant threshold on ?), rehash all the elements into a new, larger table:
- spreads keys back out, may drastically improve performance
- avoids failure for closed hashing techniques
- allows arbitrarily large tables starting from a small table
- clears out lazily deleted items
- Cost?
- Can we just copy over into a bigger array?

Load Factor in Double Hashing

- For any ? < 1 , double hashing will find an empty slot (given appropriate table size and hash ${ }_{2}$)
- Search cost appears to approach optimal (random hash):
- successful search: $\frac{1}{?} \ln \frac{1}{1 ? ?}$
- unsuccessful search: $\frac{1}{1 ? ?}$
- No primary clustering and no secondary clustering
- Cost?

The Squished Pigeon Principle

-

Extendible Hashing

Hashing technique for huge data sets

- Optimizes to reduce disk accesses
- Each hash bucket fits on one disk block
- Better than B-Trees if order is not important - why?

Table contains:

- Buckets, each fitting in one disk block, with the data
- A directory is used to hash to the correct bucket

Extendible Hash Table

- Directory entry: key prefix (first k bits) and a pointer to the bucket with all keys starting with its prefix
- Each bucket contains keys matching on first j ? k bits, plus the value associated with each key

insert(11011)?
insert(11011)?

Splitting the Directory

1. insert(10010)

But, no room to insert and no adoption!
2. Solution: Expand directory
3. Then, it's just a normal split.

How to ensure this uncommon?

If Extendible Hashing Doesn't Cut It
Option 1: Store only pointers/references to the items: (key, value) pairs are in disk

Option 2: Improve Hash + Rehash

Implementations So Far

	insert	find	delete
- Unsorted list	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
- Sorted list	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\log \mathrm{n}) ?$	$\mathrm{O}(\mathrm{n})$
- Trees	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$
- Hash Table	$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(1)$

Is there anything a hash table can't do fast?

