
1

CSE 326: Data Structures
It’s an open-and-closed hash!

Luke McDowell
Summer Quarter 2003

Reminder: Dictionary ADT

• Dictionary ADT:
– Maps values to user-

specified keys
– Or: a set of (key,

value) pairs
• Keys may be any

(homogeneous) type
• Values may be any

(homogeneous) type

• Operations:
– Insert (key, value)
– Find (key)
– Remove (key)

The Dictionary ADT is sometimes
called the “Map ADT”

• lucasm
– Lucas Kelsey McDowell,

your favorite 5th year grad
student who needs help
with Hollywood trivia

• stevaroo
– Steven Loyd Martin, a

recently graduated CSE
ugrad who’s destined fpr
great things at Berkeley

• erbad
– Aiman Mahmood Erbad,

the man with the
mysterious accent and real
name that is even longer

insert

find(erbad)

•steve0@u
- aka stevaroo…

•erbad
- Aiman Erbad, the …

Implementations So Far

• Unsorted list O(1) O(n) O(n)
• Sorted list O(n) O(log n)? O(n)
• Trees O(log n) O(log n) O(log n)

insert deletefind

How about O(1) insert/find/delete?

Hash Table Goal

erbad

…

We can do:

a[2] = “erbad”

k-1

3

2

1

0

erbad...

…

We want to do:

a[“erbad”] = “Aiman...”

“brad”

“stevaroo”

“aiman”

“lucasm”

“ann”

Hash Table Approach

h(x)

lucasm

erbad

stevaroo

ann

brad

What could go wrong?

Hash Function

Hash Table Code
First Pass

Value find(Key k) {
int index = hash(k) % tableSize;
return Table[index];

}

Key Questions:
1.What should the hash function be?
2. How should we resolve collisions?
3. What should the table size be?

2

A Good Hash Function…

… is easy (fast) to compute (O(1) and practically fast).
… distributes the data evenly (hash(a) % size ? hash(b) % size).
… uses the whole hash table (for all 0 ? k < size, there’s an i

such that hash(i) % size = k).

Good Hash Function for Integers

• Choose
– tableSize is prime
– hash(n) = n

• Example:
– tableSize = 7

insert(4)
insert(17)
find(12)
insert(9)
delete(17)

3

2

1

0

6

5

4

Easy/boring stuff we’re going to skip

• Why does the table size have to be prime?

• Picking a good hash function for strings

Read Section 5.2 of the text!

Collisions

• Pigeonhole principle says we can’t avoid all collisions
– try to hash without collision m keys into n slots with m > n
– e.g., try to put 7 pigeons into 5 holes

• What do we do when two keys hash to the same entry?
– Separate chaining: put little dictionaries in each entry

– Open addressing: pick a next entry to try

• Frequency depends on load factor

shove extra pigeons in one hole!

load factor ? = # of entries in table
tableSize

3

2

1

0

6

5

4

a d

e b

c

Separate Chaining

• Put a mini-Dictionary
at each entry
– Usually a linked list
– Why not a search tree?

• Properties
– ? can be greater than 1
– performance degrades

with length of chains

h(a) = h(d)
h(e) = h(b)

Load Factor in Separate Chaining

• Search cost
– unsuccessful search:

– successful search:

• Desired load factor:

?

3

Open Addressing

What if we only allow one Key at
each entry?
– two objects that hash to the same

spot can’t both go there
– first one there gets the spot
– next one must probe for another spot

• Properties
– ? ? 1
– performance degrades with difficulty

of finding right spot

a

c

e3

2

1

0

6

5

4

h(a) = h(d)
h(e) = h(b)

d

b

Salary-Boosting Obfuscation

“Open Hashing”
equals

“Separate Chaining”

“Closed Hashing”
equals

“Open Addressing”

Probing
• Probing how to:

– First probe - given a key k, hash to h(k)
– Second probe - if h(k) is occupied, try h(k) + f(1)
– Third probe - if h(k) + f(1) is occupied, try h(k) + f(2)
– And so forth

• Probing properties
– we force f(0) = 0
– the ith probe is to (h(k) + f(i)) mod size

• When does the probe fail?

• Does that mean the table is full?

Linear Probing

• Probe sequence is
– h(k) mod size
– h(k) + 1 mod size
– h(k) + 2 mod size
– …

f(i) = i

Linear Probing Example
insert(55)
55%7 = 6

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

insert(93)
93%7 = 2

insert(40)
40%7 = 5

insert(47)
47%7 = 5

insert(10)
10%7 = 3

Problem?

Load Factor in Linear Probing
• For any ? < 1, linear probing will find an empty slot
• Search cost (for large table sizes)

– successful search:

– unsuccessful search:

• Linear probing suffers from primary clustering
• Performance quickly degrades for ? > 1/2

? ? ???
?

???
?

?
? 21

11
2
1

?

? ? ???
?

???
?

?
?

?1
1

1
2
1

4

Quadratic Probing
• Probe sequence is

– h(k) mod size
– (h(k) + 1) mod size
– (h(k) + 4) mod size
– (h(k) + 9) mod size
– …

f(i) = i2 Quadratic Probing Example

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

insert(40)
40%7 = 5

insert(48)
48%7 = 6

insert(5)
5%7 = 5

insert(55)
55%7 = 6

insert(47)
47%7 = 5But…

Quadratic Probing Succeeds
(for ? < ½)

• If size is prime and ? < ½, then quadratic probing
will find an empty slot in size/2 probes or fewer.
– show for all 0 ? i, j ? size/2 and i ? j

(h(x) + i 2) mod size ? (h(x) + j 2) mod size

– by contradiction: suppose that for some i ? j:
(h(x) + i 2) mod size = (h(x) + j 2) mod size
i2 mod size = j 2 mod size
(i2 - j2) mod size = 0
[(i + j)(i - j)] mod size = 0

– but how can i + j = 0 or i + j = size when
i ? j and i,j ? size/2?

– same for i - j mod size = 0

Load Factor in Quadratic Probing

• For any ? < ½, quadratic probing will find an empty
slot; for greater ? , quadratic probing may find a slot

• Quadratic probing does not suffer from primary
clustering

• But what about keys that hash to the same spot?

Double HashingDouble Hashing
f(i) = i ? hash2(x)

• Probe sequence is
– h1(k) mod size
– (h1(k) + 1 ? h2(x)) mod size
– (h1(k) + 2 ? h2(x)) mod size
– …

• Goal?

A Good Double Hash Function…

… is quick to evaluate.
… differs from the original hash function.
… never evaluates to 0 (mod size).

One good choice is to choose a prime R < size and:
hash2(x) = R - (x mod R)

5

Double HashingDouble Hashing Example

probes:

93

55

40

103

2

1

0

6

5

4

insert(55)
55%7 = 6

5 - (55%5) = 5

2

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

76

3

2

1

0

6

5

4

insert(93)
93%7 = 2

1

93

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

93

40

76

3

2

1

0

6

5

4

insert(47)
47%7 = 5

5 - (47%5) = 3

2

47

93

40

76

103

2

1

0

6

5

4

insert(10)
10%7 = 3

1

47

76

93

40

47

Load Factor in Double Hashing
• For any ? < 1, double hashing will find an empty

slot (given appropriate table size and hash2)
• Search cost appears to approach optimal (random

hash):
– successful search:

– unsuccessful search:

• No primary clustering and no secondary clustering
• Cost?

??1
1

?? ?1
1

ln
1

delete(2) find(7)

Deletion with Open Addressing

• Solution?

0
1
2

3

2

1

0

6

5

4

insert(7) The Squished Pigeon Principle

• An insert using open addressing cannot work with a
load factor of 1 or more.

• An insert using open addressing with quadratic
probing may not work with a load factor of ½ or
more.

• Whether you use separate chaining or open
addressing, large load factors lead to poor
performance!

• How can we relieve the pressure on the pigeons?

Rehashing
• When the load factor gets “too large” (over a constant

threshold on ?), rehash all the elements into a new,
larger table:
– spreads keys back out, may drastically improve performance
– avoids failure for closed hashing techniques
– allows arbitrarily large tables starting from a small table
– clears out lazily deleted items

• Cost?

• Can we just copy over into a bigger array?

Rehashing Example

20
96
82

89

3

2

1

0

4

3

2

1

0

4

8

7

6

5

9

6

Extendible Hashing
Hashing technique for huge data sets

– Optimizes to reduce disk accesses
– Each hash bucket fits on one disk block
– Better than B-Trees if order is not important – why?

Table contains:
– Buckets, each fitting in one disk block, with the data
– A directory is used to hash to the correct bucket

001 010 011 110 111101

Extendible Hash Table
• Directory entry: key prefix (first k bits) and a pointer to the bucket with all

keys starting with its prefix
• Each bucket contains keys matching on first j ? k bits, plus the value

associated with each key

000 100

(j = 2)
00001
00011
00100
00110

(j = 2)
01001
01011
01100

(j = 3)
10001
10011

(j = 3)
10101
10110
10111

(j = 2)
11001
11100
11110

directory for k = 3

insert(11011)?
insert(11011)?

Splitting the Directory

1. insert(10010)
But, no room to insert and
no adoption!

2. Solution: Expand directory

3. Then, it’s just a normal split.

01 10 1100

(2)
01101

(2)
10000
10001
10011
10111

(2)
11001
11110

001 010 011 110 111101000 100

How to ensure this uncommon?

If Extendible Hashing Doesn’t Cut It

Option 1: Store only pointers/references to the items:
(key, value) pairs are in disk

Option 2: Improve Hash + Rehash

The One-Slide Hash

Collision resolution
• Separate Chaining

– Expand beyond hashtable via
secondary Dictionaries

– Allows ? > 1
• Open Addressing

– Expand within hashtable
– Secondary probing: {linear,

quadratic, double hash}
– ? ? 1 (by definition!)
– ? ? ½ (by preference!)

Choosing a Hash Function
• Make sure table size is prime
• Careful choice for strings
• “Perfect hashing”

– If keys known in advance, tune
hash function for them!

Rehashing
• Tunes up hashtable when ?

crosses the line
Extendible hashing
• For disk-based data
• Combine with B-tree directory if

needed

Hash function: maps keys to integers
Implementations So Far

• Unsorted list O(1) O(n) O(n)
• Sorted list O(n) O(log n)? O(n)
• Trees O(log n) O(log n) O(log n)
• Hash Table O(1) O(1) O(1)

insert deletefind

Is there anything a hash table can’t do fast?

