
 1

Data Structures: Practice Midterm Solutions

1. Mathematical Background

a. f(N) is O(g(N)) if there are positive constants c and N0 such that f(N) ≤ cg(N)
for N ≥ N0

b. Show that 373N+100 is O(N) (by selecting appropriate constants c and N0).
Here, f(N) = 373N+100 and g(N) = N. There are many different solutions.
One solution: Select c = 374 and N0 = 100. Then,
cg(N) = 374N = 373N + N ≥ 373N+100 for N ≥ 100

c. If T(N) is the run time of the following function, the following statements are

true (the other two are false):
(i) T(N) is O(2N)
(ii) T(N) is Ω(log N)

int FunWith(N){
if (N == 0) return 1; /* 1 */
else return FunWith(N-1) + FunWith(N-1);} /* 2 */

Here’s why. Line 1 takes a constant amount of time c0 (for N = 0) and the
“if…else” and “+” in line 2 takes constant time c, plus the time for the two
recursive calls. Therefore, the recurrence relation for T(N) is:
T(N) = 2T(N-1) + c
 = 2(2T(N-2) + c) + c = 2(2(2T(N-3) + c) + c) + c = …
 = 2NT(N-N) + c(2N-1+…+21 + 20) = 2Nc0 + c(2N-1) = Θ(2N)
This is both O(2N) and Ω(log N) but not Θ(N) or o(2N).

2. Trees and Stacks

a. Draw the final tree that results from inserting the integers 5, 2, 4, 3, 9, 12, 6
(in that order) into an empty binary search tree with no balance conditions.

Solution:

 2

b. What is the sequence of elements that results from a preorder traversal of your

tree in part (a)?
5 2 4 3 9 6 12

c. Fill in the blanks (i)-(iv) in the following routine for preorder traversal of a

binary tree using a stack. Choose one of the following to fill in each blank:
pop(S), pop(T), pop(T -> Left), pop(T -> Right),
push(T -> Left, S), push(T -> Right, S), push(T,S)

Solution:
void Stack_Preorder (Tree T, Stack S) {
if (T == NULL) return; else push(T,S);
while (!isempty(S)) {
 T = pop(S);

 print_element(T -> Element);
 if (T -> Right != NULL) push(T -> Right, S);
 if (T -> Left != NULL) push(T -> Left, S);

 }
}

3. Binary Search Trees

a. What is the worst case running time for the Find operation on a tree of N
nodes when you use: (i) an unbalanced binary search tree, (ii) an AVL tree,
and (iii) a splay tree? Select one of the following for each: O(1), O(log N),

O(N), O(N), O(N log N) (choose the best possible upper bound).
Solution: (i) O(N), (ii) O(log N), and (iii) O(N)

b. Draw the tree that results from inserting 11 followed by 7 into the following

AVL tree:

 3

Solution:

4. Binary Heaps and Binomial Queues

a. What are the two properties that make a binary tree a binary heap?
A binary heap is a binary tree that is:�
1. Complete: all levels filled except possibly the bottom level, which is filled from

left to right
2. Satisfies the heap order property: every node is smaller than (or equal to) its

children

b. Draw the binary heap that results from deleting the minimum and then

inserting 4 into the following binary heap:

 4

Solution:

c. Draw the binomial queue that results from inserting the integers 1, 2, 3, 4, 5,

6, 7 (in that order) into an empty binomial queue and then deleting the
minimum.

Solution: There are three possible solutions:

5. Hashing

Consider the hash function Hash(X) = X mod 10 and the ordered input sequence of
keys 51, 23, 73, 99, 44, 79, 89, 38. Draw the result of inserting these keys in that
order into a hash table of size 10 (cells indexed by 0, 1, …, 9).

 5

a. separate chaining: (Note: 1. You may also insert new elements at the
beginning of the list rather than the end; 2. You may also store the first
element in the array and use a linked list for the second, third, … elements)

b. open addressing with linear probing, where F(i) = i;

0 79
1 51
2 89
3 23
4 73
5 44
6
7
8 38
9 99

c. open addressing with quadratic probing, where F(i) = i2.

0 79
1 51
2 38
3 23
4 73
5 44
6
7
8 89
9 99

 6

