
1R. Rao, CSE 326

CSE 326 Lecture 10: B-Trees and Heaps

✦ It’s lunch time – what’s cookin’?
➭B-Trees
➧ Insert/Delete Examples and Run Time Analysis

➭Summary of Search Trees
➭ Introduction to Heaps and Priority Queues

✦ Covered in Chapters 4 and 6 in the text

2R. Rao, CSE 326

Recall: Properties of B-Trees

All keys in first subtree T1 < < < < k1

All keys in subtree Ti must be between ki-1 and ki

ki-1 ≤ ≤ ≤ ≤ Ti < < < < ki

All keys in last subtree TM ≥ ≥ ≥ ≥ kM-1

k1

T
i

.ki-1 ki

T
MT

1

k M-1

.

3R. Rao, CSE 326

Inserting Items in B-Trees

✦ Insert X: Do a Find on X and find appropriate leaf node
➭ If leaf node is not full, fill in empty slot with X.

E.g. Insert 5 in the tree below
➭ If leaf node is full, split leaf node and adjust parents up to

root node. E.g. Insert 9 in the tree below

13:-

6:11

3 4 - 6 7 8 11 12 - 13 14 - 17 18 -

17:-

“2-3 Tree”

4R. Rao, CSE 326

Deleting Items in B-Trees

✦ Delete X: Do a Find on X and delete value from leaf node
➭May have to combine leaf nodes and adjust parents up to

root node if number of data items falls below L/2 = 2
E.g. Delete 17 in the tree below

13:-

6:11

3 4 - 6 7 8 11 12 - 13 14 - 17 18 -

17:-

5R. Rao, CSE 326

Run Time Analysis of B-Tree Operations

✦ For a B-Tree of order M
1. Each internal node has up to M-1 keys to search
2. Each internal node has between M/2 and M children
3. Each leaf stores between L/2 and L data items

Depth d of B-Tree storing N data items is:
log M/2 (N/L) - 1 ≤ d < log M/2 (N/L) i.e.

d = O(log M/2 (N/L)) = O(log N)
(Why? Hint: Draw a B-tree with minimum children at each
node. Count its leaves as a function of depth)

✦ Find: Run time includes:
O(log M) to binary search which branch to take at each node

Total time to Find an item is O(depth*log M) = O(log N)

6R. Rao, CSE 326

What about Insert/Delete?

✦ For a B-Tree of order M
Depth of B-Tree storing N items is O(log M/2 N)

✦ Insert and Delete: Run time is:
➭ O(M) to handle splitting or combining keys in nodes
➭ Total time is O(depth*M) = O((log N/log M/2)*M)

= O((M/log M)*log N)

How do we select M?

7R. Rao, CSE 326

How do we select M and L?

✦ If Tree & Data in internal (main) memory want M and L to
be small to minimize search time at each node/leaf
➭ Typically M = 3 or 4 (e.g. M = 3 is a 2-3 tree)
➭ All N items stored in internal memory

✦ If Tree & Data on Disk Disk access time dominates!
➭ Choose M & L so that interior and leaf nodes fit on 1 disk block
➭ To minimize number of disk accesses, minimize tree height
➭ Typically M = 32 to 256, so that depth = 2 or 3 allows

very fast access to data in large databases.

✦ See Textbook for more numbers and examples.

8R. Rao, CSE 326

Summary of Search Trees

✦ Problem with Search Trees: Must keep tree balanced to allow

fast access to stored items

✦ AVL trees: Insert/Delete operations keep tree balanced

✦ Splay trees: Sequence of operations produces balanced trees

✦ Multi-way search trees (e.g. B-Trees): More than two children

per node allows shallow trees; all leaves are at the same depth

keeping tree balanced at all times

9R. Rao, CSE 326

A New Problem…

✦ Instead of finding any item (as in a search tree), suppose we
want to find only the smallest (highest priority) item quickly.
Examples:
➭ Operating system needs to schedule jobs according to priority
➭ Doctors in ER take patients according to severity of injuries
➭ Event simulation (bank customers arriving and departing,

ordered according to when the event happened)

✦ We want an ADT that can efficiently perform:
➭ FindMin (or DeleteMin)
➭ Insert

10R. Rao, CSE 326

Using the Data Structures we know…

✦ Suppose we have N items.

✦ Lists
➭ If sorted: DeleteMin is O(1) but Insert is O(N)
➭ If not sorted: Insert is O(1) but DeleteMin is O(N)

✦ Binary Search Trees (BSTs)
➭ Insert is O(log N) and DeleteMin is O(log N)

✦ BSTs look good but…
➭ BSTs designed to be efficient for Find, not just FindMin
➭We only need FindMin/DeleteMin

✦ We can do better than BSTs!
➭ O(1) FindMin and O(log N) Insert. How?

11R. Rao, CSE 326

Heaps

✦ A binary heap is a binary tree that is:
1. Complete: the tree is completely filled except possibly

the bottom level, which is filled from left to right
2. Satisfies the heap order property: every node is smaller

than (or equal to) its children

✦ Therefore, the root node is always the smallest in a heap

2

6 4

7 8

-1

0 1

0

1

2 6

3 4 5

Which of
these is not
a heap?

12R. Rao, CSE 326

Array Implementation of Heaps

✦ Since heaps are complete binary trees, we can avoid
pointers and use an array

✦ Recall our Array Implementation of Binary Trees:
➭ Root node = A[1]
➭ Children of A[i] = A[2i], A[2i + 1]
➭ Keep track of current size N (number of nodes)

2

4 6

7 5

2 4 6 7 5

0 1 2 3 4 5 6 7

N = 5

13R. Rao, CSE 326

Heaps: FindMin and DeleteMin Operations

✦ FindMin: Easy! Return root value A[1]
➭ Run time = ?

✦ DeleteMin:
➭ Delete (and return) value at root node
➭We now have a “Hole” at the root
➭ Need to fill the hole with another

value
➭ Replace with smallest child?
➧ Try replacing 2 with smallest child

and that node with its smallest
child, and so on…what happens?

2

4 3

7 5 8 9

11 9 6 10

14R. Rao, CSE 326

DeleteMin Take 1

✦ DeleteMin:
➭ Delete (and return) value at root node
➭We now have a “Hole” at the root
➭ Need to fill the hole with another

value
➭ Replace with smallest child?
➧ Try replacing 2 with smallest child

and so on…what happens?
➧ Tree is no longer complete!
➧ Let’s try another strategy…

3

4 8

7 5 9

11 9 6 10

15R. Rao, CSE 326

DeleteMin (Take 2)

✦ DeleteMin:
➭ Delete (and return) value at root node
➭ We now have a “Hole” at the root
➭ Need to fill hole with another value

✦ Since heap is smaller by one node, we
need to empty the last slot

✦ Steps:
1. Move last item to top; decrease size by 1
2. Percolate down the top item to its

correct position in the heap

2

4 3

7 5 8 9

11 9 6 10

2 4 3 7 5 8 9 11 9 6 10

16R. Rao, CSE 326

DeleteMin: Percolate Down

10

4 3

7 5 8

11 9 6

9

3

4 10

7 5 8

11 9 6

9

3

4 8

7 5 10

11 9 6

9

• Keep comparing with children A[2i] and A[2i + 1]
• Replace with smaller child and go down one level
• Done if both children are ≥ item or reached a leaf node
• What is the run time?

17R. Rao, CSE 326

DeleteMin: Run Time Analysis

✦ Run time is O(depth of tree)

✦ What is the depth of a complete binary tree of N nodes?

18R. Rao, CSE 326

DeleteMin: Run Time Analysis

✦ Run time is O(depth of heap)

✦ A heap is a complete binary tree

✦ What is the depth of a complete binary tree of N nodes?
➭ At depth d, you can have:

N = 2d (one leaf at depth d) to 2d+1-1 nodes (all leaves at
depth d)

➭ So, depth d for a heap is: log N ≤ d ≤ log(N+1)-1 or
Θ(log N)

✦ Therefore, run time of DeleteMin is O(log N)

19R. Rao, CSE 326

Next Class:

Up close and personal with Binomial Heaps

To Do:

Read Chapter 6

Homework # 2 (due this Friday)

