CSE 326 Lecture 10: B-Trees and Heaps

4+ It'slunch time — what’ s cookin’ ?

< B-Trees
» Insert/Delete Examples and Run Time Analysis

= Summary of Search Trees
< Introduction to Heaps and Priority Queues

4+ Covered in Chapters 4 and 6 in the text
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Recall: Properties of B-Trees

All keysin first subtree T, < k;

All keysin subtree T, must be between k;_; and k;

All keysin last subtree T,, >k, ,
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Inserting Itemsin B-Trees

+ Insert X: Do aFind on X and find appropriate leaf node
< If leaf node is not full, fill in empty slot with X.
E.g. Insert 5 in the tree below
< If leaf node is full, split leaf node and adjust parents up to

root node. E.g. Insert 9 in the tree below
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Deleting Itemsin B-Trees

+ Delete X: Do aFind on X and delete value from leaf node
< May have to combine leaf nodes and adjust parents up to
root node if number of dataitems falls below | L/2] =2
E.g. Delete 17 in the tree below
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Run Time Analysis of B-Tree Operations

+ For aB-Treeof order M
1. Each internal node has up to M-1 keysto search
2. Each internal node has between| M/2] and M children
3. Each leaf stores between| L/2] and L dataitems

Depth d of B-Tree storing N data items is:
log v (N/L) - 1< d<logpry, (N/L) ie
d = O(log ry1 (N/L)) = O(log N)

(Why? Hint: Draw a B-tree with minimum children at each
node. Count its leaves as a function of depth)

+ Find: Runtime includes:
O(log M) to binary search which branch to take at each node

Total timeto Find an item is O(depth*log M) = O(log N)
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What about Insert/Delete?

+ For aB-Treeof order M
Depth of B-Tree storing N items is O(log ry»1 N)

+ Insert and Delete: Runtimeis:
< O(M) to handle splitting or combining keys in nodes
< Total time is O(depth* M) = O((log N/log[ M/21)*M)
= O((M/log M)*log N)

How do we select M?

R. Rao, CSE 326 6




How do wesdect M and L?

+ If Tree & Dataininternal (main) memory  want M and L to
be small to minimize search time at each node/leaf
< Typically M =3 or4(eg. M =3isa2-3tree)
< All N items stored in internal memory

+ If Tree& DataonDisk  Disk access time dominates!
< Choose M & L sothat interior and leaf nodes fit on 1 disk block
< To minimize number of disk accesses, minimize tree height

< Typically M = 32to 256, so that depth=2o0r 3 alows
very fast accessto datain large databases.

+ See Textbook for more numbers and examples.
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Summary of Search Trees

+ Problem with Search Trees. Must keep tree balanced to allow
fast access to sored items

+ AVL trees: Insert/Delete operations keep tree balanced

Splay trees. Sequence of operations produces balanced trees

Multi-way search trees (e.g. B-Trees): More than two children
per node allows shallow trees; all leaves are at the same depth
keeping tree balanced at all times
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A New Problem...

+ Instead of finding any item (as in a search tree), suppose we
want to find only the smallest (highest priority) item quickly.
Examples:

< Operating system needs to schedule jobs according to priority

< Doctors in ER take patients according to severity of injuries

< Event simulation (bank customers arriving and departing,
ordered according to when the event happened)

+ Wewant an ADT that can efficiently perform:
< FindMin (or DeleteMin)
@ Insert
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Using the Data Structures we know...

+ Suppose we have N items.

+ Ligts
< If sorted: DeleteMin is O(1) but Insert is O(N)
< If not sorted: Insert is O(1) but DeleteMin is O(N)

+ Binary Search Trees (BSTs)
< Insert isO(log N) and DeleteMin is O(log N)

+ BSTslook good but...
< BSTsdesigned to be efficient for Find, not just FindMin
< We only need FindMin/DeleteMin

+ We can do better than BSTs!
< O(1) FindMin and O(log N) Insert. How?
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Heaps

+ A binary heap isabinary tree that is:
1. Complete: the treeis completely filled except possibly
the bottom level, which isfilled from left to right
2. Satisfies the heap order property: every node is smaller
than (or equal to) its children

+ Therefore, the root node is always the smallest in a heap

: Which of
® @ 0 @ 2 (® these is not

aheap?
@ ® © ©X0I6
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Array Implementation of Heaps

+ Since heaps are complete binary trees, we can avoid
pointers and use an array

+ Recall our Array |mplementation of Binary Trees:
< Root node = A[1]
< Children of A[i] = A[2i], A[2i + 1]
< Keep track of current size N (number of nodes)

(2)
@ ®

@ ®
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Heaps. FindMin and DeleteMin Operations

+ FindMin: Easy! Return root value A[1]
< Runtime="7?

+ DeleteMin:

< Delete (and return) value at root node

< We now have a“Hol€e" at the root

< Need to fill the hole with another

value
< Replace with smallest child?
» Try replacing 2 with smallest child

and that node with its smallest
child, and so on...what happens?
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DeeteMin Take 1

+ DeleteMin:
< Delete (and return) value at root node
< We now have a“Hole" at the root
< Need to fill the hole with another
value
< Replace with smallest child?
» Try replacing 2 with smallest child
and so on...what happens?
» Treeis no longer complete!
» Let'stry another strategy...
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DeleteMin (Take 2)

+ DeéleteMin:
< Delete (and return) value at root node
< We now have a“Hole" at the root
< Need to fill hole with another value

+ Since heap is smaller by one node, we
need to empty the last slot

+ Steps.
1. Move last item to top; decrease size by 1
2. Percolate down thetop itemto its
correct position in the heap

—1214|3|7|5/8]9|11 9/6|10
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DdeteMin: Percolate Down

» Keep comparing with children A[2i] and A[2i + 1]
* Replace with smaller child and go down one level

* Done if both children are > item or reached a leaf node
* What isthe run time?
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DeleteMin: Run Time Analysis

4+ Run time is O(depth of tree)
+ What isthe depth of a complete binary tree of N nodes?
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DeleteMin: Run Time Analysis

+ Run time is O(depth of heap)
+ A heap isacomplete binary tree

+ What isthe depth of a complete binary tree of N nodes?
< At depth d, you can have:
N = 29 (one leaf at depth d) to 24+1-1 nodes (all leaves at
depth d)
< S0, depth d for aheap is. log N < d < log(N+1)-1 or
O(log N)

+ Therefore, runtime of DeleteMin is O(log N)
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Next Class:
Up close and personal with Binomial Heaps

To Do:
Read Chapter 6
Homework # 2 (due this Friday)
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