CSE 326 Lecture 16: All sorts of sorts

+ What's on our plate today?
< Sorting Algorithms: The Best of the Fastest...

» Heapsort
» Mergesort
» Quicksort

+ Covered in Chapter 7 of the textbook

R. Reo, CSE 326

Review of Sorting Algorithms

+ “Simple” sorts
< Bubblesort, Selection Sort, and Insertion Sort
< Run Time = O(N?)

+ Insertion Sort: O(N) if elements already sorted

+ Shellsort
< Works by running Insertion sort on subsets of elements

over several passes
< O(N™®) using Hibbard' s increment sequence

R. Reo, CSE 326

Review of Sorting Algorithms

+ “Simple” sorts
< Bubblesort, Selection Sort, and Insertion Sort
< Run Time = O(N?)
< Insertion Sort: O(N) if elements already sorted

+ Shellsort
< Works by running Insertion sort on subsets of elements

< O(N™®) using Hibbard' s increment sequence

Canya beat O(N*®) usin’ a
Binary Search Treeto sort?

R. Reo, CSE 326

Using Binary Search Treesfor Sorting

+ Canwe beat O(N*®) using aBST to sort N elements?
< Yed!!
< Insert each element into aninitially empty BST
< Do an In-Order traversal to get sorted output

+ Running time="?

R. Reo, CSE 326

Using Binary Search Treesfor Sorting

+ Can we beat O(N*®) using aBST to sort N elements?
< Yed!!
< Insert each element into an initially empty BST
< Do an In-Order traversal to get sorted output

+ Running time = N Inserts, each takes O(log N) time, plus
O(N) for In-Order traversal = O(N log N) = o(N*®)

+ Any Drawbacks?

R. Reo, CSE 326

Using Binary Search Treesfor Sorting

+ Drawback: Uses Extra Space
< Need to alocate space for tree nodes and pointers
< O(N) extra space needed, not in place sorting

Waittaminute...what if the tree is complete, and we
use an array representation — can we sort in place?
Sy

‘ Recall your favorite data structure with
theinitials B. H.

R. Reo, CSE 326

Using a Binary Heap for Sorting

+ Main ldea: Build
< Build a max-heap M ax-heap
< Do N DeleteMax operations @ @ — @ @
and store each Max e ement
in the unused end of array @ (5) (4) @
0 1 2 3 DeletelVIax
8294 5 (8)
5 @
9|5/ 8|42
@ ©®
8/ 52419 Largest element
R, G 36 in correct place

Heapsort: Analysis

+ Heapsort isin-place...is it also stable?

4+ Running time = time needed for building max-heap +
time for N DeleteMax operations = ?

R. Reo, CSE 326

Heapsort: Analysis

4+ Running time = time to build max-heap +
time for N DeleteMax operations
= O(N) + N O(log N) = O(N log N)

+ Can also show that running time is Q(N log N) for some
inputs, so worst case is ®(N log N)

+ Average case running time isalso O(N log N) (seetext for
proof)

R. Rao, CSE 326 9

How about a “Divide and Conquer” strategy?

+ Very important strategy in computer science:
1. Divide problem into smaller parts
2. Independently solve the parts
3. Combine these solutions to get overall solution

R. Rao, CSE 326 10

How about a “Divide and Conquer” strategy?

+ ldea: Divide array into two halves, recursively sort left and
right halves, then merge two halves
< KnownasM ergesort

+ Example: Mergesort this input array:
0O 1 2 3 4 5 6 7
812194 |5| 3|1|6

R. Rao, CSE 326 11

Mergesort Example

82|94 |5| 3|1|6
Divide T
o 82 9 4 5316
Divide ~ N\
Divid 8 2 9 4 53 16
ivide ~ - 7 1 s
lelement 8 2 9 4 5 3 1 6
W4 " W4 W4
Merge 5"g 9 35 16
24389 1356
Merge

123456289

R. Rao, CSE 326 12

Mergesort Analysis

+ Mergesort divides array in half and calls itself on the two
halves. After returning, it merges both halves using a
temporary array (see textbook for code).

+ IsMergesort stable? In-place?
+ Let T(N) be the running time for an array of N elements

4+ Recurrencerelation for runtime = ?

R. Rao, CSE 326 13

Mergesort Analysis

+ Let T(N) be the running time for an array of N elements

+ Mergesort divides array in half and calls itself on the two
halves. After returning, it merges both halvesusing a
temporary array (see textbook for code).

+ Eachrecursive call takes T(N/2) and merging takes O(N)

+ Therefore, the recurrence relation for T(N) is:.
< T(1) =0O(1) (Basecase 1 dement array = constant time)
< T(N)=2T(N/2) + N

+ What is T(N) as a big-oh function of N?

R. Rao, CSE 326 14

Squeezing the big-oh out of our recurrence...

+ Can solve the recurrence by expanding the terms:
T(N) =2*T(N/2) + N
< T(N/2) =2*T(N/4) + N/2, T(N/4) = ... etc. Therefore:
& T(N) = 2¢[2*T(N/4) + N/2] + N
= 22*T(N/2?) + 2*N
= 2?[2*T(N/8) + N/4] + 2*N
= 2%T(N/2%) + 3*N
(recall that 299N = N)
= 2109N*T(N/2'%9N) + (log N)*N
=N* T(1) + Nlog N
=N* O(1) + NlogN = O(N log N)
< T(N) = O(N log N)

R. Reo, CSE 326

15

Being Quick without taking up Space...

+ Mergesort requires temporary array for merging = O(N)
extra space — can we do in place sorting without extra
space?

< Want adivide and conquer strategy that does not use the

O(N) extra space

+ Enter...“Quicksort”:
|dea:

Partition the array such that Elementsin left sub-array <

elements in right sub-array.
Recursively sort left and right sub-arrays

R. Reo, CSE 326

16

How do we partition the array?

+ Choose an element from the array as the pivot

+ Moveall elements < pivot into left sub-array and all
elements > pivot into right sub-array
< If element = pivot, can be handled in several ways

718 2 15 911

< Suppose pivot =7
< Left subarray = 2 Right sub-array =18 15 9 11

R. Rao, CSE 326 17

Now we are ready to Quicksort

+ Quicksort Algorithm:
1. Partition array into left and right sub-arrays such that:
Elements in left sub-array < elementsin right sub-array
2. Recursively sort left and right sub-arrays
3. Concatenate left and right sub-arrays with pivot in middle

+ How to Partition the Array:
1. Choose an element from the array as the pivot
2. Move all elements < pivot into left sub-array and all
elements > pivot into right sub-array

+ Pivot? One choice: use first element in array

R. Rao, CSE 326 18

Quicksort Example

+ Sort the array containing:
916 4 15 2 5171

\Ei vot

Partition 4 2 5 1 < 9 < 16 15 17

- e N\
Partiton 2 1 4 5 15 16 17
\ } | |
Concatenate 1 2 5 15 17
N v \ /
Concatenate 1 2 4 5 15 16 17
\ v

Concatenate 12459 15 16 17

R. Rao, CSE 326 19

Partitioning In Place

+ Hmmm...seems like we need an extra array for partitioning
and concatenating left/right sub-arrays
< No!

+ Algorithm for In Place Partitioning:

Swap pivot with last dement: swap A[pivot] and A[N-1]
Set pointersi and j to beginning and end of array
Increment i until you hit an element A[i] > pivot
Decrement j until you hit an element AJ[j] < pivot

Swap A[i] and A[]]

Repeat until i and j cross (i exceeds or equalsj)

Swap pivot and A[i]

NooarwNE

+ Example: Partition in place:
9 16 4 15 2 5 17 1(pivot=A[0] =9)

R. Rao, CSE 326 20

The Pivotal Role of Pivots

+ How do we pick the pivot for each
partition?
< Pivot choice can make a big
difference in runtime

+ First Idea: Pick thefirst element in
(sub-)array as pivot
< What if it isthe smallest or largest?

< What if the array is sorted? How 246 89
many recursive calls does quicksort 246 8 9
make? -

R. Reo, CSE 326 21
Choosing the Right Pivot
+ 2 |dea: Pick arandom element 9 16 4 15 2

< Getsrid of asymmetry in |eft/right sizes

< But...requires calls to pseudo-random
number generator — expensive'error-
prone

+ Third idea: Pick median (N/2" largest
element)
< |deal but hard to compute without
sorting!
< Compromise: Pick median of three
elements

2 4 9 15 16

R. Rao, CSE 326 22

M edian-of-Three Pivot

+ Find the median of the first, middle and last element
2 49 15 16 54 2 15 16
5
+ Takesonly O(1) time and not error-prone like the pseudo-
random pivot choice

+ Less chance of poor performance as compared to looking at
only 1 element

+ For sorted inputs, splits array nicely in half each recursion
< Good performance

R. Rao, CSE 326 23

Quicksort Performance Analysis

+ Best Case Performance: Algorithm always chooses best
pivot and keeps splitting sub-arrays in half at each recursion
> T(0)=T(1) =0(1) (constanttimeif Oor 1 element)
< For N > 1, 2 recursive calls + linear time for partitioning
< Recurrence Relation for T(N) = ?
< Big-Oh function for T(N) =?

R. Rao, CSE 326 24

Quicksort Performance Analysis

+ Best Case Performance: Algorithm always chooses best
pivot and keeps splitting sub-arrays in half at each recursion
> T(0)=T(1) =0(1) (constanttimeif Oor 1 element)
< For N > 1, 2 recursive calls + linear time for partitioning
< T(N) =2T(N/2) + O(N) (Same as Mergesort)
< T(N) = O(N log N)

4+ Worst Case Performance: What is the worst case?

R. Rao, CSE 326 25

Quicksort Performance Analysis

+ Worst Case Performance: Algorithm keeps picking the worst
pivot — one sub-array empty at each recursion
< T(0)=T(1) =0(2)
< Recurrence relation for T(N) = ?
< Big-Oh function for T(N) =?

R. Rao, CSE 326 26

Quicksort Performance Analysis

+ Worst Case Performance: Algorithm keeps picking the worst
pivot — one sub-array empty at each recursion
< T(0)=T(1) =0(2)
< T(N) = T(N-1) + O(N)
=T(N-2) + O(N-1) + O(N) = ...
=T(0) + O(2) + ... + O(N)
= T(N) = O(N?)
+ Fortunately, average case performance is O(N log N) (see
text for proof)

R. Rao, CSE 326 27

Can We Sort Any Faster?

+ Heapsort, Mergesort, and Quicksort all runin O(N log N)
best case running time

+ Canwedo any better?

+ Can Joey Sortiepants from Hackersville, USA come up with
an O(N) sorting algorithm?

R. Rao, CSE 326 28

Questions to ponder over the Weekend
How fast can one sort?
Can | find time to read Chapter 77?
What was the meaning of the midterm?

What is the meaning of life? (extra credit)

Have a great weekend!

R. Rao, CSE 326 29

