
1R. Rao, CSE 326

CSE 326 Lecture 16: All sorts of sorts

✦ What’s on our plate today?
➭ Sorting Algorithms: The Best of the Fastest…
➧ Heapsort
➧ Mergesort
➧ Quicksort

✦ Covered in Chapter 7 of the textbook

2R. Rao, CSE 326

Review of Sorting Algorithms

✦ “Simple” sorts
➭ Bubblesort, Selection Sort, and Insertion Sort
➭ Run Time = O(N2)

✦ Insertion Sort: O(N) if elements already sorted

✦ Shellsort
➭Works by running Insertion sort on subsets of elements 

over several passes
➭ O(N1.5) using Hibbard’s increment sequence



3R. Rao, CSE 326

Review of Sorting Algorithms

✦ “Simple” sorts
➭ Bubblesort, Selection Sort, and Insertion Sort
➭ Run Time = O(N2)
➭ Insertion Sort: O(N) if elements already sorted

✦ Shellsort
➭Works by running Insertion sort on subsets of elements
➭ O(N1.5) using Hibbard’s increment sequence

Canya beat O(N1.5) usin’ a 
Binary Search Tree to sort?

4R. Rao, CSE 326

Using Binary Search Trees for Sorting

✦ Can we beat O(N1.5) using a BST to sort N elements?
➭ Yes!!
➭ Insert each element into an initially empty BST
➭ Do an In-Order traversal to get sorted output

✦ Running time = ?



5R. Rao, CSE 326

Using Binary Search Trees for Sorting

✦ Can we beat O(N1.5) using a BST to sort N elements?
➭ Yes!!
➭ Insert each element into an initially empty BST
➭ Do an In-Order traversal to get sorted output

✦ Running time = N Inserts, each takes O(log N) time, plus 
O(N) for In-Order traversal = O(N log N) = o(N1.5)

✦ Any Drawbacks?

6R. Rao, CSE 326

Using Binary Search Trees for Sorting

✦ Drawback: Uses Extra Space
➭ Need to allocate space for tree nodes and pointers
➭ O(N) extra space needed, not in place sorting

Waittaminute…what if the tree is complete, and we 
use an array representation – can we sort in place?

Recall your favorite data structure with 
the initials B. H.



7R. Rao, CSE 326

Using a Binary Heap for Sorting

✦ Main Idea:
➭ Build a max-heap
➭ Do N DeleteMax operations 

and store each Max element 
in the unused end of array

9

5 8

4 2

8     2     9     4     5

0      1      2      3       4      5     6      7

8     5     2     4     9

8

5 2

4 9

8

2 9

4 5

9 5     8     4     2

Build
Max-heap

DeleteMax

Largest element
in correct place

8R. Rao, CSE 326

Heapsort: Analysis

✦ Heapsort is in-place…is it also stable?

✦ Running time = time needed for building max-heap + 
time for N DeleteMax operations = ?



9R. Rao, CSE 326

Heapsort: Analysis

✦ Running time = time to build max-heap +
time for N DeleteMax operations

= O(N) + N O(log N) = O(N log N)

✦ Can also show that running time is Ω(N log N) for some 
inputs, so worst case is ΘΘΘΘ(N log N)

✦ Average case running time is also O(N log N)  (see text for 
proof)

10R. Rao, CSE 326

How about a “Divide and Conquer” strategy?

✦ Very important strategy in computer science:
1. Divide problem into smaller parts
2. Independently solve the parts
3. Combine these solutions to get overall solution



11R. Rao, CSE 326

How about a “Divide and Conquer” strategy?

✦ Idea: Divide array into two halves, recursively sort left and 
right halves, then merge two halves
➭ Known as Mergesort

✦ Example: Mergesort this input array:

8     2     9     4     5 3    1     6

0      1      2      3       4      5     6      7

12R. Rao, CSE 326

Mergesort Example

8     2     9     4     5 3    1     6

8  2   9   4 5   3   1   6

8   2 1   69   4 5   3

8 2 9 4 5 3 1 6

2   8 4    9 3   5 1   6

2   4   8   9 1   3   5   6

1   2   3   4   5   6   8   9

Merge

Merge

Merge

Divide

Divide

Divide

1 element



13R. Rao, CSE 326

Mergesort Analysis

✦ Mergesort divides array in half and calls itself on the two 
halves. After returning, it merges both halves using a 
temporary array (see textbook for code).

✦ Is Mergesort stable? In-place?

✦ Let T(N) be the running time for an array of N elements

✦ Recurrence relation for run time = ?

14R. Rao, CSE 326

Mergesort Analysis

✦ Let T(N) be the running time for an array of N elements

✦ Mergesort divides array in half and calls itself on the two 
halves. After returning, it merges both halves using a 
temporary array (see textbook for code).

✦ Each recursive call takes T(N/2) and merging takes O(N)

✦ Therefore, the recurrence relation for T(N) is:
➭ T(1) = O(1)  (Base case: 1 element array = constant time)
➭ T(N) = 2T(N/2) + N

✦ What is T(N) as a big-oh function of N?



15R. Rao, CSE 326

Squeezing the big-oh out of our recurrence…

✦ Can solve the recurrence by expanding the terms:
T(N) = 2*T(N/2) + N
➭ T(N/2) = 2*T(N/4) + N/2, T(N/4) = … etc. Therefore:
➭ T(N) = 2*[2*T(N/4) + N/2] + N

= 22*T(N/22) + 2*N
= 22[2*T(N/8) + N/4] + 2*N
= 23*T(N/23) + 3*N
… (recall that 2log N = N)
= 2log N*T(N/2log N) + (log N)*N
= N * T(1) + N log N
= N * O(1) + N log N = O(N log N)

➭ T(N) = O(N log N)

16R. Rao, CSE 326

Being Quick without taking up Space…

✦ Mergesort requires temporary array for merging = O(N) 
extra space – can we do in place sorting without extra 
space?
➭ Want a divide and conquer strategy that does not use the 

O(N) extra space

✦ Enter…“Quicksort”: 
Idea: 

Partition the array such that Elements in left sub-array < 
elements in right sub-array. 
Recursively sort left and right sub-arrays



17R. Rao, CSE 326

How do we partition the array?

✦ Choose an element from the array as the pivot

✦ Move all elements < pivot into left sub-array and all 
elements > pivot into right sub-array 
➭ If element = pivot, can be handled in several ways

➭ Suppose pivot = 7
➭ Left subarray =  2 Right sub-array = 18   15   9   11

7 18   2   15   9  11

18R. Rao, CSE 326

Now we are ready to Quicksort

✦ Quicksort Algorithm: 
1. Partition array into left and right sub-arrays such that:

Elements in left sub-array < elements in right sub-array
2. Recursively sort left and right sub-arrays
3. Concatenate left and right sub-arrays with pivot in middle

✦ How to Partition the Array:
1. Choose an element from the array as the pivot
2. Move all elements < pivot into left sub-array and all 

elements > pivot into right sub-array 

✦ Pivot? One choice: use first element in array



19R. Rao, CSE 326

Quicksort Example

✦ Sort the array containing:
9 16   4   15   2   5  17  1

Partition 4 2   5   1 9 16 15   17         

2 1      4        5 15 16     17

1     2 5 15 17

1   2   4   5 15   16   17

Concatenate 1   2   4   5   9   15   16   17

< <

Partition

Concatenate

pivot

Concatenate

20R. Rao, CSE 326

Partitioning In Place

✦ Hmmm…seems like we need an extra array for partitioning 
and concatenating left/right sub-arrays
➭ No!

✦ Algorithm for In Place Partitioning:
1. Swap pivot with last element: swap A[pivot] and A[N-1]
2. Set pointers i and j to beginning and end of array
3. Increment i until you hit an element A[i] > pivot
4. Decrement j until you hit an element A[j] < pivot
5. Swap A[i] and A[j]
6. Repeat until i and j cross (i exceeds or equals j)
7. Swap pivot and A[i]

✦ Example: Partition in place:  
9 16   4   15   2   5  17  1 (pivot = A[0] = 9)



21R. Rao, CSE 326

The Pivotal Role of Pivots

✦ How do we pick the pivot for each 
partition?
➭ Pivot choice can make a big 

difference in run time

✦ First Idea: Pick the first element in 
(sub-)array as pivot
➭What if it is the smallest or largest?
➭What if the array is sorted? How 

many recursive calls does quicksort 
make?

2 4   6   8   9

2  4 6   8   9

22R. Rao, CSE 326

Choosing the Right Pivot

✦ 2nd Idea: Pick a random element
➭ Gets rid of asymmetry in left/right sizes
➭ But…requires calls to pseudo-random 

number generator – expensive/error-
prone

✦ Third idea: Pick median (N/2th largest 
element)
➭ Ideal but hard to compute without 

sorting!
➭ Compromise: Pick median of three

elements

9   16   4   15 2

2    4    9   15 16



23R. Rao, CSE 326

Median-of-Three Pivot

✦ Find the median of the first, middle and last element

✦ Takes only O(1) time and not error-prone like the pseudo-
random pivot choice

✦ Less chance of poor performance as compared to looking at 
only 1 element

✦ For sorted inputs, splits array nicely in half each recursion
➭ Good performance

2   4   9   15   16

9

5   4   2   15   16

5

24R. Rao, CSE 326

Quicksort Performance Analysis

✦ Best Case Performance: Algorithm always chooses best 
pivot and keeps splitting sub-arrays in half at each recursion
➭ T(0) = T(1) = O(1)    (constant time if 0 or 1 element)
➭ For N > 1, 2 recursive calls + linear time for partitioning
➭ Recurrence Relation for T(N) = ?
➭ Big-Oh function for T(N) = ?



25R. Rao, CSE 326

Quicksort Performance Analysis

✦ Best Case Performance: Algorithm always chooses best 
pivot and keeps splitting sub-arrays in half at each recursion
➭ T(0) = T(1) = O(1)    (constant time if 0 or 1 element)
➭ For N > 1, 2 recursive calls + linear time for partitioning
➭ T(N) = 2T(N/2) + O(N)     (Same as Mergesort)
➭ T(N) = O(N log N)

✦ Worst Case Performance: What is the worst case?

26R. Rao, CSE 326

Quicksort Performance Analysis

✦ Worst Case Performance: Algorithm keeps picking the worst 
pivot – one sub-array empty at each recursion
➭ T(0) = T(1) = O(1)
➭ Recurrence relation for T(N) = ?
➭ Big-Oh function for T(N) = ?



27R. Rao, CSE 326

Quicksort Performance Analysis

✦ Worst Case Performance: Algorithm keeps picking the worst 
pivot – one sub-array empty at each recursion
➭ T(0) = T(1) = O(1)
➭ T(N) = T(N-1) + O(N)

= T(N-2) + O(N-1) + O(N) = … 
= T(0) + O(1) + … + O(N)

➭ T(N) = O(N2)
✦ Fortunately, average case performance is O(N log N) (see 

text for proof)

28R. Rao, CSE 326

Can We Sort Any Faster?

✦ Heapsort, Mergesort, and Quicksort all run in O(N log N) 
best case running time 

✦ Can we do any better?

✦ Can Joey Sortiepants from Hackersville, USA come up with 
an O(N) sorting algorithm?



29R. Rao, CSE 326

Questions to ponder over the Weekend

How fast can one sort?

Can I find time to read Chapter 7?

What was the meaning of the midterm?

What is the meaning of life? (extra credit)

Have a great weekend!


