CSE 326 Lecture 16: All sorts of sorts
\uparrow What's on our plate today?
\Rightarrow Sorting Algorithms: The Best of the Fastest...

- Heapsort
- Mergesort
- Quicksort
\downarrow Covered in Chapter 7 of the textbook

Review of Sorting Algorithms

- "Simple" sorts
\Rightarrow Bubblesort, Selection Sort, and Insertion Sort
\Rightarrow Run Time $=\mathrm{O}\left(\mathrm{N}^{2}\right)$
\uparrow Insertion Sort: O(N) if elements already sorted
- Shellsort
\Rightarrow Works by running Insertion sort on subsets of elements over several passes
$\Rightarrow \mathrm{O}\left(\mathrm{N}^{1.5}\right)$ using Hibbard's increment sequence

Review of Sorting Algorithms

- "Simple" sorts
\Rightarrow Bubblesort, Selection Sort, and Insertion Sort
\Rightarrow Run Time $=\mathrm{O}\left(\mathrm{N}^{2}\right)$
\Rightarrow Insertion Sort: $\mathrm{O}(\mathrm{N})$ if elements already sorted
- Shellsort
\Rightarrow Works by running Insertion sort on subsets of elements
$\Rightarrow \mathrm{O}\left(\mathrm{N}^{1.5}\right)$ using Hibbard's increment sequence

$$
\text { Canya beat } \mathrm{O}\left(\mathbf{N}^{1.5}\right) \text { usin' a }
$$ Binary Search Tree to sort?

Using Binary Search Trees for Sorting

\uparrow Can we beat $\mathrm{O}\left(\mathbf{N}^{1.5}\right)$ using a BST to sort N elements?
\Rightarrow Yes!!
\Rightarrow Insert each element into an initially empty BST
\Rightarrow Do an In-Order traversal to get sorted output
\downarrow Running time $=$?

Using Binary Search Trees for Sorting

\downarrow Can we beat $\mathrm{O}\left(\mathbf{N}^{1.5}\right)$ using a BST to sort N elements? \Rightarrow Yes!!
\Rightarrow Insert each element into an initially empty BST
\Rightarrow Do an In-Order traversal to get sorted output
\downarrow Running time $=\mathrm{N}$ Inserts, each takes $\mathrm{O}(\log \mathrm{N})$ time, plus $\mathrm{O}(\mathrm{N})$ for In-Order traversal $=\mathbf{O}(\mathbf{N} \log \mathrm{N})=\mathrm{o}\left(\mathrm{N}^{1.5}\right)$

- Any Drawbacks?

Using Binary Search Trees for Sorting

\uparrow Drawback: Uses Extra Space
\Rightarrow Need to allocate space for tree nodes and pointers
$\Rightarrow \mathrm{O}(\mathrm{N})$ extra space needed, not in place sorting

Waittaminute...what if the tree is complete, and we use an array representation - can we sort in place?

Using a Binary Heap for Sorting

Heapsort: Analysis

\uparrow Heapsort is in-place...is it also stable?
\downarrow Running time = time needed for building max-heap + time for N DeleteMax operations = ?

Heapsort: Analysis

\leftrightarrow Running time = time to build max-heap +

$$
\begin{array}{r}
\text { time for N DeleteMax operations } \\
=O(N)+N O(\log N)=O(N \log N)
\end{array}
$$

\uparrow Can also show that running time is $\Omega(\mathrm{N} \log \mathrm{N})$ for some inputs, so worst case is $\Theta(\mathbf{N} \log \mathrm{N})$
\uparrow Average case running time is also $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ (see text for proof)

How about a "Divide and Conquer" strategy?
\uparrow Very important strategy in computer science:

1. Divide problem into smaller parts
2. Independently solve the parts
3. Combine these solutions to get overall solution

How about a "Divide and Conquer" strategy?

- Idea: Divide array into two halves, recursively sort left and right halves, then merge two halves
\Rightarrow Known as Mergesort
- Example: Mergesort this input array:

0	1	2	3	4		5	7	
8	2	9	4	5	3	1	6	

Mergesort Example

Mergesort Analysis

- Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array (see textbook for code).
\downarrow Is Mergesort stable? In-place?
\downarrow Let $\mathrm{T}(\mathrm{N})$ be the running time for an array of N elements
\downarrow Recurrence relation for run time $=$?

Mergesort Analysis

\rightarrow Let $\mathrm{T}(\mathrm{N})$ be the running time for an array of N elements

- Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array (see textbook for code).
\downarrow Each recursive call takes $\mathrm{T}(\mathrm{N} / 2)$ and merging takes $\mathrm{O}(\mathrm{N})$
- Therefore, the recurrence relation for $\mathrm{T}(\mathrm{N})$ is:
$\Rightarrow \mathrm{T}(1)=\mathrm{O}(1)$ (Base case: 1 element array $=$ constant time)
$\Rightarrow \mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}$
\uparrow What is $\mathrm{T}(\mathrm{N})$ as a big-oh function of N ?

Squeezing the big-oh out of our recurrence...

\uparrow Can solve the recurrence by expanding the terms:

$$
\begin{aligned}
\mathrm{T}(\mathrm{~N})= & 2 * \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N} \\
\Rightarrow \mathrm{~T}(\mathrm{~N} / 2) & =2^{*}(\mathrm{~T} / 4)+\mathrm{N} / 2, \mathrm{~T}(\mathrm{~N} / 4)=\ldots \text { etc. Therefore: } \\
\Rightarrow \mathrm{T}(\mathrm{~N}) & =2^{*}[2 * \mathrm{~T}(\mathrm{~N} / 4)+\mathrm{N} / 2]+\mathrm{N} \\
& =2^{2 * T}\left(\mathrm{~N} / 2^{2}\right)+2 * \mathrm{~N} \\
& \left.=2^{2}[2 * \mathrm{~T} / 8)+\mathrm{N} / 4\right]+2^{*} \mathrm{~N} \\
& =2^{3 * T}\left(\mathrm{~N} / 2^{3}\right)+3 * \mathrm{~N} \quad\left(\text { recall that } 2^{\log \mathrm{N}}=\mathrm{N}\right) \\
& \ldots \\
& =2^{\log \mathrm{N} * \mathrm{~T}\left(\mathrm{~N} / 2^{\log \mathrm{N}}\right)+(\log \mathrm{N}) * \mathrm{~N}} \\
& =\mathrm{N} * \mathrm{~T}(1)+\mathrm{N} \log \mathrm{~N} \\
& =\mathrm{N} * \mathrm{O}(1)+\mathrm{N} \log \mathrm{~N}=\mathrm{O}(\mathrm{~N} \log \mathrm{~N}) \\
\Rightarrow \mathrm{T}(\mathrm{~N}) & =\mathrm{O}(\mathrm{~N} \log \mathrm{~N})
\end{aligned}
$$

Being Quick without taking up Space...
\downarrow Mergesort requires temporary array for merging $=\mathrm{O}(\mathrm{N})$ extra space - can we do in place sorting without extra space?
\Rightarrow Want a divide and conquer strategy that does not use the $\mathrm{O}(\mathrm{N})$ extra space

- Enter..."Quicksort":

Idea:
Partition the array such that Elements in left sub-array < elements in right sub-array.
Recursively sort left and right sub-arrays

How do we partition the array?

\downarrow Choose an element from the array as the pivot

- Move all elements < pivot into left sub-array and all elements > pivot into right sub-array
\Rightarrow If element = pivot, can be handled in several ways

$$
\begin{array}{llllll}
\underline{7} & 18 & 2 & 15 & 9 & 11
\end{array}
$$

\Rightarrow Suppose pivot $=7$
\Rightarrow Left subarray $=2 \quad$ Right sub-array $=\begin{array}{lllll}18 & 15 & 9 & 11\end{array}$

Now we are ready to Quicksort

- Quicksort Algorithm:

1. Partition array into left and right sub-arrays such that: Elements in left sub-array < elements in right sub-array
2. Recursively sort left and right sub-arrays
3. Concatenate left and right sub-arrays with pivot in middle

- How to Partition the Array:

1. Choose an element from the array as the pivot
2. Move all elements < pivot into left sub-array and all elements > pivot into right sub-array

- Pivot? One choice: use first element in array

Quicksort Example

Partitioning In Place

- Hmmm...seems like we need an extra array for partitioning and concatenating left/right sub-arrays
\Rightarrow No!
- Algorithm for In Place Partitioning:

1. Swap pivot with last element: swap $A[p i v o t]$ and $A[N-1]$
2. Set pointers i and j to beginning and end of array
3. Increment i until you hit an element $\mathrm{A}[\mathrm{i}]>$ pivot
4. Decrement j until you hit an element $\mathrm{A}[\mathrm{j}]$ < pivot
5. Swap $A[i]$ and $A[j]$
6. Repeat until i and j cross (i exceeds or equals j)
7. Swap pivot and $A[i]$

- Example: Partition in place:
$\begin{array}{llllllll}\underline{9} & 16 & 4 & 15 & 2 & 5 & 17 & 1\end{array}($ pivot $=\mathrm{A}[0]=9)$

The Pivotal Role of Pivots

\downarrow How do we pick the pivot for each partition?
\Rightarrow Pivot choice can make a big difference in run time
\rightarrow First Idea: Pick the first element in (sub-)array as pivot
\Rightarrow What if it is the smallest or largest?
\Rightarrow What if the array is sorted? How many recursive calls does quicksort make?

```
2}44668%
246689
```


Choosing the Right Pivot

$\rightarrow 2^{\text {nd }}$ Idea: Pick a random element
\Rightarrow Gets rid of asymmetry in left/right sizes
\Rightarrow But...requires calls to pseudo-random
$\begin{array}{lllll}2 & 4 & 9 & 15 & 16\end{array}$ number generator - expensive/errorprone

- Third idea: Pick median (N/2 ${ }^{\text {th }}$ largest element)
\Rightarrow Ideal but hard to compute without sorting!
\Rightarrow Compromise: Pick median of three elements

Median-of-Three Pivot

\downarrow Find the median of the first, middle and last element

- Takes only $\mathrm{O}(1)$ time and not error-prone like the pseudorandom pivot choice
\uparrow Less chance of poor performance as compared to looking at only 1 element
- For sorted inputs, splits array nicely in half each recursion \Rightarrow Good performance

Quicksort Performance Analysis

\uparrow Best Case Performance: Algorithm always chooses best pivot and keeps splitting sub-arrays in half at each recursion $\Rightarrow \mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1) \quad$ (constant time if 0 or 1 element)
\Rightarrow For $\mathrm{N}>1,2$ recursive calls + linear time for partitioning
\Rightarrow Recurrence Relation for $\mathrm{T}(\mathrm{N})=$?
\Rightarrow Big-Oh function for $\mathrm{T}(\mathrm{N})=$?

Quicksort Performance Analysis

- Best Case Performance: Algorithm always chooses best pivot and keeps splitting sub-arrays in half at each recursion $\Rightarrow \mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1) \quad$ (constant time if 0 or 1 element)
\Rightarrow For $\mathrm{N}>1,2$ recursive calls + linear time for partitioning $\Rightarrow \mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{O}(\mathrm{N}) \quad$ (Same as Mergesort)
$\Rightarrow \mathrm{T}(\mathrm{N})=\underline{\mathrm{O}(\mathrm{N} \log \mathrm{N})}$
- Worst Case Performance: What is the worst case?

Quicksort Performance Analysis

- Worst Case Performance: Algorithm keeps picking the worst pivot - one sub-array empty at each recursion $\Rightarrow \mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1)$
\Rightarrow Recurrence relation for $\mathrm{T}(\mathrm{N})=$?
\Rightarrow Big-Oh function for $\mathrm{T}(\mathrm{N})=$?

Quicksort Performance Analysis

- Worst Case Performance: Algorithm keeps picking the worst pivot - one sub-array empty at each recursion
$\Rightarrow \mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1)$
$\Rightarrow \mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{O}(\mathrm{N})$

$$
=\mathrm{T}(\mathrm{~N}-2)+\mathrm{O}(\mathrm{~N}-1)+\mathrm{O}(\mathrm{~N})=\ldots
$$

$$
=\mathrm{T}(0)+\mathrm{O}(1)+\ldots+\mathrm{O}(\mathrm{~N})
$$

$\Rightarrow \mathrm{T}(\mathrm{N})=\underline{\mathrm{O}\left(\mathrm{N}^{2}\right)}$
\uparrow Fortunately, average case performance is $\underline{\mathrm{O}(\mathrm{N} \log \mathrm{N})}$ (see text for proof)

Can We Sort Any Faster?

\checkmark Heapsort, Mergesort, and Quicksort all run in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ best case running time

- Can we do any better?
\uparrow Can Joey Sortiepants from Hackersville, USA come up with an $\mathrm{O}(\mathrm{N})$ sorting algorithm?

Questions to ponder over the Weekend
How fast can one sort?
Can I find time to read Chapter 7?
What was the meaning of the midterm?
What is the meaning of life? (extra credit)

Have a great weekend!

