
1R. Rao, CSE 326

CSE 326 Lecture 17: Out of Sorts

✦ Items on Today’s Menu:
➭How fast can we sort?
➧ Lower bound on comparison-based sorting

➭Tricks to sort faster than the lower bound
➭External versus Internal Sorting
➭ Practical comparisons of internal sorting algorithms
➭ Summary of sorting

✦ Covered in Chapter 7 of the textbook

2R. Rao, CSE 326

How fast can we sort?

✦ Heapsort, Mergesort, and Quicksort all run in O(N log N)
best case running time

✦ Can we do any better?

✦ Can we believe hacker/hackeress Pat Swe (pronounced
“Sway”) from Swetown (formerly Softwareville), USA, who
claims to have discovered an O(N log log N) sorting
algorithm?

3R. Rao, CSE 326

The Answer is No! (if using comparisons only)

✦ Recall our basic assumption: we can only compare two
elements at a time – how does this limit the run time?

✦ Suppose you are given N elements
➭ Assume no duplicates – any sorting algorithm must also

work for this case

✦ How many possible orderings can you get?
➭ Example: a, b, c (N = 3)
➭ How many distinct sequences exist?

4R. Rao, CSE 326

The Answer is No! (if using comparisons only)

✦ How many possible orderings can you get?
➭ Example: a, b, c (N = 3)
➭ Orderings: 1. a b c 2. b c a 3. c a b 4. a c b 5. b a c

6. c b a
➭ N = 3: We have 6 orderings = 3•2•1 = 3!

✦ For N elements, how many possible orderings exist?

5R. Rao, CSE 326

The Answer is No! (if using comparisons only)

✦ How many possible orderings can you get?
➭ Example: a, b, c (N = 3)
➭ Orderings: 1. a b c 2. b c a 3. c a b 4. a c b 5. b a c

6. c b a
➭ 6 orderings = 3•2•1 = 3!

✦ For N elements: ___ ___ ___ … ___ ___
= N! orderings

N choices (N-1) choices 1 choice

6R. Rao, CSE 326

A “Decision Tree” for Sorting N=3 Elements

a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

Leaves contain all possible orderings of a, b, c

Possible
Orderings

Remaining
Orderings

“Decision”

7R. Rao, CSE 326

Decision Trees and Sorting

✦ A Decision Tree is a Binary Tree such that:
➭ Each node = a set of orderings
➭ Each edge = 1 comparison
➭ Each leaf = 1 unique ordering
➭ How many leaves for N distinct elements?

✦ Only 1 leaf has correct sorted ordering for given a, b, c

✦ Each sorting algorithm corresponds to a decision tree
➭ Finds correct leaf by following edges (= comparisons)

✦ Run time ≥ maximum no. of comparisons
➭ Depends on: depth of decision tree
➭What is the depth of a decision tree for N distinct elements?

8R. Rao, CSE 326

Lower Bound on Comparison-Based Sorting

✦ Suppose you have a binary tree of depth d . How many
leaves can the tree have?
➭ E.g. Depth = 1 → at most 2 leaves
➭ Depth = 2 → at most 4 leaves, etc.
➭ Depth = d → how many leaves?

9R. Rao, CSE 326

Lower Bound on Comparison-Based Sorting

✦ A binary tree of depth d has at most 2d leaves
➭ E.g. depth d = 1 2 leaves, d = 2 4 leaves, etc.
➭ Can prove by induction

✦ Number of leaves L ≤ 2d d ≥≥≥≥ log L

✦ Decision tree has L = N! leaves
➭ Depth d ≥ log(N!)
➭What is log(N!)? (first, what is log(A•B)?)

10R. Rao, CSE 326

Lower Bound on Comparison-Based Sorting

✦ Decision tree has L = N! leaves
➭ Depth d ≥ log(N!)
➭What is log(N!)?
➭ log(N!) = log N + log(N-1) + … log(N/2) + … + log 1

≥≥≥≥ log N + log(N-1) + … log(N/2) (N/2 terms only)
≥≥≥≥ (N/2)•log(N/2) = ΩΩΩΩ(N log N)

✦ Result: Any sorting algorithm based on comparisons between
elements requires ΩΩΩΩ(N log N) comparisons

11R. Rao, CSE 326

Lower Bound on Comparison-Based Sorting

✦ Decision tree has L = N! leaves
➭ Depth d ≥ log(N!)
➭What is log(N!)? (first, what is log(A•B)?)
➭ log(N!) = ΩΩΩΩ(N log N)

✦ Result: Any sorting algorithm based on comparisons between
elements requires ΩΩΩΩ(N log N) comparisons

✦ Corollary: Run time of any comparison-based sorting algorithm
is ΩΩΩΩ(N log N)
➭ Can never get an O(N log log N) comparison-based sorting

algorithm (sorry, Pat Swe!)

12R. Rao, CSE 326

Hey! (you say)…what about Bucket Sort?

✦ Recall: Bucket sort
➭ Elements are integers in the range 0 to B-1
➭ Idea: Array Count has B slots (“buckets”)
1. Initialize: Count[i] = 0 for i = 0 to B-1
2. Given input integer i, Count[i]++
3. After reading all inputs, scan Count[i] for i = 0 to B-1

and print i if Count[i] is non-zero

✦ What is the running time for sorting N integers?

13R. Rao, CSE 326

What’s up with Bucket Sort?

✦ Recall: Bucket sort Elements are integers known to
always be in the range 0 to B-1

✦ What is the running time for sorting N integers?
➭ Running Time: O(B+N)
➧ B to zero/scan the array and N to read the input

➭ If B is Θ(N), then running time for Bucket sort = O(N)
➭ Doesn’t this violate the ΩΩΩΩ(N log N) lower bound

result??

14R. Rao, CSE 326

The Scoop behind Bucket Sort

✦ Recall: Bucket sort Elements are integers known to
always be in the range 0 to B-1

✦ What is the running time for sorting N integers?
➭ Running Time: O(B+N)
➭ If B is Θ(N), then running time for Bucket sort = O(N)
➭ Doesn’t this violate the O(N log N) lower bound

result??
✦ No – When we do Count[i]++, we are comparing one

element with all B elements, not just two elements
➭ Not regular 2-way comparison-based sorting

15R. Rao, CSE 326

Radix Sort = Stable Bucket Sort

✦ Problem: What if number of buckets needed is too large?

✦ Recall: Stable sort = a sort that does not change order of
items with same key

✦ Radix sort = stable bucket sort on “slices” of key
1. Divide integers/strings into digits/characters

2. Bucket-sort from least significant to most significant
digit/character
➧ Uses linked lists – see Chap 3 for an example

➭ Stability ensures keys already sorted stay sorted
➭ Takes O(P(B+N)) time where P = number of digits

16R. Rao, CSE 326

Radix Sort Example

67

123

38

3

721

9

537

478

9

38

478

67

537

123

3

721

478

67

38

537

123

721

09

03

721

537

478

123

067

038

009

003

Bucket
sort
1’s
digit

Bucket
sort
10’s
digit

Bucket
sort
100’s
digit

17R. Rao, CSE 326

Internal versus External Sorting

✦ So far assumed that accessing A[i] is fast – Array A is stored
in internal memory (RAM)
➭ Algorithms so far are good for internal sorting

✦ What if A is so large that it doesn’t fit in internal memory?
➭ Data on disk or tape
➭ Delay in accessing A[i]

➧ E.g. need to spin disk and move head

✦ Need sorting algorithms that minimize disk/tape accesses
➭ Enter…External sorting

18R. Rao, CSE 326

External Sorting

✦ Sorting algorithms that minimize disk/tape accesses
➭ External sorting – Basic Idea:
➧ Load chunk of data into RAM

$ Sort this data
$ Store this “run” back on disk/tape

➧ Repeat for all data
➧ Then: Use the Merge routine from Mergesort to merge

the sorted runs
➧ Repeat until you have only one run (one sorted chunk)
➧ Text gives some examples

✦ Waittaminute!! How relevant is external sorting?

19R. Rao, CSE 326

Internal Memory is getting dirt cheap…

From: http://www.macresource.com/mrp/ramwatch/trend.shtml

Price (in US$) for 1 MB of RAM

20R. Rao, CSE 326

External Sorting: A (soon-to-be) Relic of the Past?

✦ Price of internal memory is dropping, memory size is
increasing, both at exponential rates (Moore’s law)

✦ Quite likely that in the future, data will probably fit in
internal memory for reasonably large input sizes

✦ Tapes seldom used these days – disks are faster and getting
cheaper with greater capacity

✦ So, for most practical purposes, internal sorting algorithms
such as Quicksort should prove to be sufficiently efficient

21R. Rao, CSE 326

Okay…so let’s talk about practical performance

Input Size N

R
un

 t
im

e
(i

n
se

co
nd

s)

Insertion sort Heapsort

Shellsort

Quicksort

[Data from
textbook
Chap. 7]

22R. Rao, CSE 326

Summary of Sorting

✦ Sorting choices:
➭ O(N2) – Bubblesort, Selection Sort, Insertion Sort
➭ O(Nx) – Shellsort (x = 3/2, 4/3, 2, etc. depending on incr. seq.)

➭ O(N log N) average case running time:
➧ Heapsort: needs 2 comparisons to move data (between

2 children and parent) – may not be fast in practice (see
graph)

➧ Mergesort: easy to code but uses O(N) extra space
➧ Quicksort: fastest in practice but trickier to code, O(N2)

worst case
➭ O(P·N) – Radix sort (using Bucket sort) for special cases

where keys are P digit integers/strings

23R. Rao, CSE 326

The Practical Side of Sorting

✦ Practical Choices:
➭When N is large, use Quicksort with median-of-three pivot
➭ For small N (< 20), N log N sorts are slower due to extra

overhead (larger constants in big-oh function)
➭ For N < 20, use Insertion sort
➭ A Good Heuristic:
➧ In Quicksort, do insertion sort when sub-array size < 20

(instead of partitioning) and return this sorted sub-array
for further processing

➧ Speeds up the running time

24R. Rao, CSE 326

Next time:

Data Structures for Union and Find operations

(sorry, not the kind seen in Frat parties)

To do:

Finish chapter 7

Read chapter 8

