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CSE 326 Lecture 17: Out of Sorts

✦ Items on Today’s Menu:
➭How fast can we sort?
➧ Lower bound on comparison-based sorting

➭Tricks to sort faster than the lower bound
➭External versus Internal Sorting
➭ Practical comparisons of internal sorting algorithms
➭ Summary of sorting

✦ Covered in Chapter 7 of the textbook
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How fast can we sort?

✦ Heapsort, Mergesort, and Quicksort all run in O(N log N) 
best case running time 

✦ Can we do any better?

✦ Can we believe hacker/hackeress Pat Swe (pronounced 
“Sway”) from Swetown (formerly Softwareville), USA, who 
claims to have discovered an O(N log log N) sorting 
algorithm?
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The Answer is No! (if using comparisons only)

✦ Recall our basic assumption: we can only compare two 
elements at a time – how does this limit the run time?

✦ Suppose you are given N elements
➭ Assume no duplicates – any sorting algorithm must also 

work for this case

✦ How many possible orderings can you get?
➭ Example: a, b, c  (N = 3)
➭ How many distinct sequences exist?
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The Answer is No! (if using comparisons only)

✦ How many possible orderings can you get?
➭ Example: a, b, c  (N = 3)
➭ Orderings: 1. a b c   2. b c a 3. c a b   4. a c b   5. b a c   

6. c b a   
➭ N = 3: We have 6 orderings = 3•2•1 = 3!

✦ For N elements, how many possible orderings exist?
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The Answer is No! (if using comparisons only)

✦ How many possible orderings can you get?
➭ Example: a, b, c  (N = 3)
➭ Orderings: 1. a b c   2. b c a 3. c a b   4. a c b   5. b a c   

6. c b a   
➭ 6 orderings = 3•2•1 = 3!

✦ For N elements:  ___   ___   ___   … ___   ___ 
= N! orderings

N choices (N-1) choices 1 choice
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A “Decision Tree” for Sorting N=3 Elements

a < b < c,  b < c < a,
c < a < b,  a < c < b,
b < a < c,  c < b < a 

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c 
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c 

c < b < a

b < c < a b < a < c 

a < b a > b

a > ca < c

b < c b > c

b < c b > c 

c < a c > a

Leaves contain all possible orderings of a, b, c

Possible 
Orderings

Remaining 
Orderings

“Decision”
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Decision Trees and Sorting

✦ A Decision Tree is a Binary Tree such that:
➭ Each node = a set of orderings
➭ Each edge = 1 comparison
➭ Each leaf = 1 unique ordering
➭ How many leaves for N distinct elements?

✦ Only 1 leaf has correct sorted ordering for given a, b, c

✦ Each sorting algorithm corresponds to a decision tree
➭ Finds correct leaf by following edges (= comparisons)

✦ Run time ≥ maximum no. of comparisons
➭ Depends on: depth of decision tree
➭What is the depth of a decision tree for N distinct elements?
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Lower Bound on Comparison-Based Sorting

✦ Suppose you have a binary tree of depth d . How many 
leaves can the tree have?
➭ E.g. Depth = 1 → at most 2 leaves
➭ Depth = 2 → at most 4 leaves, etc.
➭ Depth = d → how many leaves?
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Lower Bound on Comparison-Based Sorting

✦ A binary tree of depth d has at most 2d leaves
➭ E.g. depth d = 1 2 leaves, d = 2 4 leaves, etc.
➭ Can prove by induction

✦ Number of leaves L ≤ 2d d ≥≥≥≥ log L

✦ Decision tree has L = N! leaves 
➭ Depth d ≥ log(N!)
➭What is log(N!)?     (first, what is log(A•B)?)
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Lower Bound on Comparison-Based Sorting

✦ Decision tree has L = N! leaves
➭ Depth d ≥ log(N!)
➭What is log(N!)? 
➭ log(N!) = log N + log(N-1) + … log(N/2) + … + log 1

≥≥≥≥ log N + log(N-1) + … log(N/2)  (N/2 terms only)
≥≥≥≥ (N/2)•log(N/2) = ΩΩΩΩ(N log N)

✦ Result: Any sorting algorithm based on comparisons between 
elements requires ΩΩΩΩ(N log N) comparisons
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Lower Bound on Comparison-Based Sorting

✦ Decision tree has L = N! leaves
➭ Depth d ≥ log(N!)
➭What is log(N!)?     (first, what is log(A•B)?)
➭ log(N!) = ΩΩΩΩ(N log N)

✦ Result: Any sorting algorithm based on comparisons between 
elements requires ΩΩΩΩ(N log N) comparisons

✦ Corollary: Run time of any comparison-based sorting algorithm 
is ΩΩΩΩ(N log N) 
➭ Can never get an O(N log log N) comparison-based sorting 

algorithm (sorry, Pat Swe!)
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Hey! (you say)…what about Bucket Sort?

✦ Recall: Bucket sort
➭ Elements are integers in the range 0 to B-1
➭ Idea: Array Count has B slots (“buckets”)
1. Initialize: Count[i] = 0 for i = 0 to B-1 
2. Given input integer i, Count[i]++
3. After reading all inputs, scan Count[i] for i = 0 to B-1 

and print i if Count[i] is non-zero 

✦ What is the running time for sorting N integers?
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What’s up with Bucket Sort?

✦ Recall: Bucket sort Elements are integers known to 
always be in the range 0 to B-1

✦ What is the running time for sorting N integers?
➭ Running Time: O(B+N)  
➧ B to zero/scan the array and N to read the input

➭ If B is Θ(N), then running time for Bucket sort = O(N)
➭ Doesn’t this violate the ΩΩΩΩ(N log N) lower bound 

result??
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The Scoop behind Bucket Sort

✦ Recall: Bucket sort Elements are integers known to 
always be in the range 0 to B-1

✦ What is the running time for sorting N integers?
➭ Running Time: O(B+N)  
➭ If B is Θ(N), then running time for Bucket sort = O(N)
➭ Doesn’t this violate the O(N log N) lower bound 

result??
✦ No – When we do Count[i]++, we are comparing one 

element with all B elements, not just two elements
➭ Not regular 2-way comparison-based sorting
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Radix Sort = Stable Bucket Sort

✦ Problem: What if number of buckets needed is too large?

✦ Recall: Stable sort = a sort that does not change order of 
items with same key

✦ Radix sort = stable bucket sort on “slices” of key
1. Divide integers/strings into digits/characters

2. Bucket-sort from least significant to most significant 
digit/character 
➧ Uses linked lists – see Chap 3 for an example

➭ Stability ensures keys already sorted stay sorted
➭ Takes O(P(B+N)) time where P = number of digits
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Radix Sort Example
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Internal versus External Sorting

✦ So far assumed that accessing A[i] is fast – Array A is stored 
in internal memory (RAM)
➭ Algorithms so far are good for internal sorting

✦ What if A is so large that it doesn’t fit in internal memory?
➭ Data on disk or tape
➭ Delay in accessing A[i]

➧ E.g. need to spin disk and move head

✦ Need sorting algorithms that minimize disk/tape accesses
➭ Enter…External sorting
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External Sorting

✦ Sorting algorithms that minimize disk/tape accesses
➭ External sorting – Basic Idea:
➧ Load chunk of data into RAM

$ Sort this data
$ Store this “run” back on disk/tape

➧ Repeat for all data
➧ Then: Use the Merge routine from Mergesort to merge 

the sorted runs
➧ Repeat until you have only one run (one sorted chunk)
➧ Text gives some examples

✦ Waittaminute!! How relevant is external sorting?
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Internal Memory is getting dirt cheap…

From: http://www.macresource.com/mrp/ramwatch/trend.shtml

Price (in US$) for 1 MB of RAM
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External Sorting: A (soon-to-be) Relic of the Past?

✦ Price of internal memory is dropping, memory size is 
increasing, both at exponential rates (Moore’s law)

✦ Quite likely that in the future, data will probably fit in 
internal memory for reasonably large input sizes

✦ Tapes seldom used these days – disks are faster and getting 
cheaper with greater capacity

✦ So, for most practical purposes, internal sorting algorithms 
such as Quicksort should prove to be sufficiently efficient
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Okay…so let’s talk about practical performance

Input Size N

R
un

 t
im

e 
(i

n 
se

co
nd

s)

Insertion sort Heapsort

Shellsort

Quicksort

[Data from
textbook
Chap. 7]
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Summary of Sorting

✦ Sorting choices:
➭ O(N2) – Bubblesort, Selection Sort, Insertion Sort 
➭ O(Nx) – Shellsort (x = 3/2, 4/3, 2, etc. depending on incr. seq.)

➭ O(N log N) average case running time:
➧ Heapsort: needs 2 comparisons to move data (between 

2 children and parent) – may not be fast in practice (see 
graph)

➧ Mergesort: easy to code but uses O(N) extra space
➧ Quicksort: fastest in practice but trickier to code, O(N2) 

worst case
➭ O(P·N) – Radix sort (using Bucket sort) for special cases 

where keys are P digit integers/strings
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The Practical Side of Sorting

✦ Practical Choices:
➭When N is large, use Quicksort with median-of-three pivot
➭ For small N (< 20), N log N sorts are slower due to extra 

overhead (larger constants in big-oh function)
➭ For N < 20, use Insertion sort
➭ A Good Heuristic:
➧ In Quicksort, do insertion sort when sub-array size < 20 

(instead of partitioning) and return this sorted sub-array 
for further processing

➧ Speeds up the running time
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Next time: 

Data Structures for Union and Find operations 

(sorry, not the kind seen in Frat parties)

To do:

Finish chapter 7

Read chapter 8


