CSE 326 Lecture 17: Out of Sorts

\downarrow Items on Today's Menu:
\Rightarrow How fast can we sort?

- Lower bound on comparison-based sorting
\Rightarrow Tricks to sort faster than the lower bound
\Rightarrow External versus Internal Sorting
\Rightarrow Practical comparisons of internal sorting algorithms
\Rightarrow Summary of sorting
- Covered in Chapter 7 of the textbook

How fast can we sort?

\uparrow Heapsort, Mergesort, and Quicksort all run in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ best case running time
\downarrow Can we do any better?
\uparrow Can we believe hacker/hackeress Pat Swe (pronounced "Sway") from Swetown (formerly Softwareville), USA, who claims to have discovered an $\mathrm{O}(\mathrm{N} \log \log \mathrm{N})$ sorting algorithm?

The Answer is No! (if using comparisons only)

- Recall our basic assumption: we can only compare two elements at a time - how does this limit the run time?
- Suppose you are given N elements
\Rightarrow Assume no duplicates - any sorting algorithm must also work for this case
\uparrow How many possible orderings can you get?
\Rightarrow Example: a, b, c ($\mathrm{N}=3$)
\Rightarrow How many distinct sequences exist?

The Answer is No! (if using comparisons only)

\uparrow How many possible orderings can you get?
\Rightarrow Example: a, b, c ($\mathrm{N}=3$)
\Rightarrow Orderings: 1. abc 2.bca 3.cab4. acb 5.bac 6. c b a
$\Rightarrow \mathrm{N}=3$: We have 6 orderings $=3 \cdot 2 \cdot 1=3$!
\uparrow For N elements, how many possible orderings exist?

The Answer is No! (if using comparisons only)

\downarrow How many possible orderings can you get?
\Rightarrow Example: a, b, c ($\mathrm{N}=3$)
\Rightarrow Orderings: 1.abc 2.bca 3.cab 4.acb 5.bac 6. c b a
$\Rightarrow 6$ orderings $=3 \cdot 2 \cdot 1=3$!
\rightarrow For N elements:

$=\mathrm{N}$! orderings

Decision Trees and Sorting

\downarrow A Decision Tree is a Binary Tree such that:
\Rightarrow Each node $=$ a set of orderings
\Rightarrow Each edge $=1$ comparison
\Rightarrow Each leaf $=1$ unique ordering
\Rightarrow How many leaves for N distinct elements?

- Only 1 leaf has correct sorted ordering for given a, b, c
- Each sorting algorithm corresponds to a decision tree
\Rightarrow Finds correct leaf by following edges (= comparisons)
\uparrow Run time \geq maximum no. of comparisons
\Rightarrow Depends on: depth of decision tree
\Leftrightarrow What is the depth of a decision tree for N distinct elements?

Lower Bound on Comparison-Based Sorting

\uparrow Suppose you have a binary tree of depth d . How many leaves can the tree have?
\Rightarrow E.g. Depth $=1 \rightarrow$ at most 2 leaves
\Rightarrow Depth $=2 \rightarrow$ at most 4 leaves, etc.
\Rightarrow Depth $=\mathrm{d} \rightarrow$ how many leaves?

Lower Bound on Comparison-Based Sorting

\rightarrow A binary tree of depth d has at most $2^{\text {d }}$ leaves
\Rightarrow E.g. depth $\mathrm{d}=1 \quad 2$ leaves, $\mathrm{d}=2 \quad 4$ leaves, etc.
\Rightarrow Can prove by induction

- Number of leaves $L \leq 2^{\text {d }} \quad \mathbf{d} \geq \log L$
\leftrightarrow Decision tree has $\mathrm{L}=\mathrm{N}$! leaves
\Rightarrow Depth $\mathrm{d} \geq \log (\mathrm{N}!)$
\Rightarrow What is $\log (\mathrm{N}!)$? (first, what is $\log (\mathrm{A} \cdot \mathrm{B}) ?$)

Lower Bound on Comparison-Based Sorting

- Decision tree has $\mathrm{L}=\mathrm{N}$! leaves
\Rightarrow Depth $\mathrm{d} \geq \log (\mathrm{N}!)$
\Rightarrow What is $\log (\mathrm{N}!)$?
$\Rightarrow \log (\mathrm{N}!)=\log \mathrm{N}+\log (\mathrm{N}-1)+\ldots \log (\mathrm{N} / 2)+\ldots+\log 1$ $\geq \log \mathrm{N}+\log (\mathrm{N}-1)+\ldots \log (\mathrm{N} / 2)$ ($\mathrm{N} / 2$ terms only) $\geq(\mathrm{N} / 2) \cdot \log (\mathrm{N} / 2)=\Omega(\mathbf{N} \log \mathbf{N})$
- Result: Any sorting algorithm based on comparisons between elements requires $\Omega(\mathbf{N} \log \mathbf{N})$ comparisons

Lower Bound on Comparison-Based Sorting

\rightarrow Decision tree has $\mathrm{L}=\mathrm{N}$! leaves
\Rightarrow Depth $\mathrm{d} \geq \log (\mathrm{N}!)$
\Rightarrow What is $\log (\mathrm{N}!)$? (first, what is $\log (\mathrm{A} \cdot \mathrm{B})$?)
$\Rightarrow \log (\mathrm{N}!)=\boldsymbol{\Omega}(\mathbf{N} \log \mathbf{N})$
\uparrow Result: Any sorting algorithm based on comparisons between elements requires $\boldsymbol{\Omega}(\mathbf{N} \log \mathbf{N})$ comparisons

- Corollary: Run time of any comparison-based sorting algorithm is $\Omega(\mathbf{N} \log \mathbf{N})$
\Rightarrow Can never get an $\mathrm{O}(\mathrm{N} \log \log \mathrm{N})$ comparison-based sorting algorithm (sorry, Pat Swe!)

Hey! (you say)... what about Bucket Sort?

- Recall: Bucket sort
\Rightarrow Elements are integers in the range 0 to B-1
\Rightarrow Idea: Array Count has B slots ("buckets")

1. Initialize: Count $[\mathrm{i}]=0$ for $\mathrm{i}=0$ to $\mathrm{B}-1$
2. Given input integer i, Count[i]++
3. After reading all inputs, scan Count $[\mathrm{i}]$ for $\mathrm{i}=0$ to $\mathrm{B}-1$ and print i if Count[i] is non-zero
\downarrow What is the running time for sorting N integers?

What's up with Bucket Sort?

- Recall: Bucket sort Elements are integers known to always be in the range 0 to $\mathrm{B}-1$
- What is the running time for sorting N integers?
\Rightarrow Running Time: $\mathrm{O}(\mathrm{B}+\mathrm{N})$
- B to zero/scan the array and N to read the input
\Rightarrow If B is $\Theta(N)$, then running time for Bucket sort $=\mathbf{O}(N)$
\Rightarrow Doesn't this violate the $\Omega(\mathrm{N} \log \mathrm{N})$ lower bound result??

The Scoop behind Bucket Sort

- Recall: Bucket sort Elements are integers known to always be in the range 0 to B-1
\downarrow What is the running time for sorting N integers?
\Rightarrow Running Time: $\mathrm{O}(\mathrm{B}+\mathrm{N})$
\Rightarrow If B is $\Theta(N)$, then running time for Bucket sort $=\mathbf{O}(\mathbf{N})$
\Rightarrow Doesn't this violate the $\mathbf{O}(\mathrm{N} \log \mathrm{N})$ lower bound result??
- No - When we do Count[i]++, we are comparing one element with all B elements, not just two elements \Rightarrow Not regular 2-way comparison-based sorting

Radix Sort = Stable Bucket Sort

- Problem: What if number of buckets needed is too large?
- Recall: Stable sort $=$ a sort that does not change order of items with same key
- Radix sort = stable bucket sort on "slices" of key

1. Divide integers/strings into digits/characters
2. Bucket-sort from least significant to most significant digit/character

- Uses linked lists - see Chap 3 for an example
\Rightarrow Stability ensures keys already sorted stay sorted
\Rightarrow Takes $\mathrm{O}(\mathrm{P}(\mathrm{B}+\mathrm{N}))$ time where $\mathrm{P}=$ number of digits

Radix Sort Example

478	Bucket sort 1's digit	721	Bucket sort 10's digit	03	Bucket sort 100's digit	$\underline{0} 03$
537		$\underline{3}$		09		009
9		123		721		038
721		537		123		067
3		67		537		123
38		$47 \underline{8}$		$\underline{3} 8$		478
123		38		$\underline{6}$		537
67		9		$4 \underline{7} 8$		721

Internal versus External Sorting

\rightarrow So far assumed that accessing $\mathrm{A}[\mathrm{i}]$ is fast - Array A is stored in internal memory (RAM)
\Rightarrow Algorithms so far are good for internal sorting
\checkmark What if A is so large that it doesn't fit in internal memory?
\Rightarrow Data on disk or tape
\Rightarrow Delay in accessing $\mathrm{A}[\mathrm{i}]$

- E.g. need to spin disk and move head
\checkmark Need sorting algorithms that minimize disk/tape accesses
\Rightarrow Enter...External sorting

External Sorting

- Sorting algorithms that minimize disk/tape accesses
\Rightarrow External sorting - Basic Idea:
- Load chunk of data into RAM
- Sort this data
- Store this "run" back on disk/tape
- Repeat for all data
- Then: Use the Merge routine from Mergesort to merge the sorted runs
- Repeat until you have only one run (one sorted chunk)
- Text gives some examples
\downarrow Waittaminute!! How relevant is external sorting?

Internal Memory is getting dirt cheap...

External Sorting: A (soon-to-be) Relic of the Past?

\uparrow Price of internal memory is dropping, memory size is increasing, both at exponential rates (Moore's law)
\uparrow Quite likely that in the future, data will probably fit in internal memory for reasonably large input sizes

- Tapes seldom used these days - disks are faster and getting cheaper with greater capacity
- So, for most practical purposes, internal sorting algorithms such as Quicksort should prove to be sufficiently efficient

Okay...so let's talk about practical performance

Summary of Sorting

- Sorting choices:
$\Rightarrow \mathrm{O}\left(\mathrm{N}^{2}\right)$ - Bubblesort, Selection Sort, Insertion Sort
$\Rightarrow \mathrm{O}\left(\mathrm{N}^{x}\right)-$ Shellsort ($\mathrm{x}=3 / 2,4 / 3,2$, etc. depending on incr. seq.) $\Rightarrow \mathrm{O}(\mathrm{N} \log \mathrm{N})$ average case running time:
- Heapsort: needs 2 comparisons to move data (between 2 children and parent) - may not be fast in practice (see graph)
- Mergesort: easy to code but uses $\mathrm{O}(\mathrm{N})$ extra space
- Quicksort: fastest in practice but trickier to code, $\mathrm{O}\left(\mathrm{N}^{2}\right)$ worst case
$\Rightarrow \mathrm{O}(\mathrm{P} \cdot \mathrm{N})$ - Radix sort (using Bucket sort) for special cases where keys are P digit integers/strings

The Practical Side of Sorting

\checkmark Practical Choices:
\Rightarrow When N is large, use Quicksort with median-of-three pivot
\Rightarrow For small $\mathrm{N}(<20), \mathrm{N} \log \mathrm{N}$ sorts are slower due to extra overhead (larger constants in big-oh function)
\Rightarrow For $\mathrm{N}<20$, use Insertion sort
\Rightarrow A Good Heuristic:

- In Quicksort, do insertion sort when sub-array size < 20 (instead of partitioning) and return this sorted sub-array for further processing
- Speeds up the running time

Next time:
Data Structures for Union and Find operations (sorry, not the kind seen in Frat parties)

To do:

Finish chapter 7

Read chapter 8

