
\Rightarrow A new problem: Dynamic Equivalence
\Rightarrow The setting:
Motivation and Definitions
\Rightarrow The players:

- Union and Find, two ADT operations

Up-tree data structure
\Rightarrow Suspense-filled cliffhanger (to be continued...next time)

- Covered in Chapter 8 of the textbook
R. Rao, CSE 326 Some of the material on these slides are courtesy of: S. Wolfman, CSE 326, $2000 \quad 1$

Motivation

- Consider the relation " $=$ " between integers

1. For any integer $\mathrm{A}, \mathrm{A}=\mathrm{A}$
2. For integers A and $\mathrm{B}, \mathrm{A}=\mathrm{B}$ means that $\mathrm{B}=\mathrm{A}$
3. For integers A, B, and $\mathrm{C}, \mathrm{A}=\mathrm{B}$ and $\mathrm{B}=\mathrm{C}$ means that $\mathrm{A}=\mathrm{C}$

- Consider cities connected by two-way roads

1. A is trivially connected to itself
2. A is connected to B means B is connected to A
3. If A is connected to B and B is connected to C, then A is connected to C

- Consider electrical connections between components on a computer chip
$\Rightarrow 1,2$, and 3 are again satisfied

Equivalence Relations

- An equivalence relation R obeys three properties:

1. reflexive: for any $x, x \mathrm{R} x$ is true
2. symmetric: for any x and $y, x \mathrm{R} y$ implies $y \mathrm{R} x$
3. transitive: for any x, y, and $z, x \mathrm{R} y$ and $y \mathrm{R} z$ implies $x \mathrm{R} z$

- Preceding relations are all examples of equivalence relations
- What are not equivalence relations?

Equivalence Relations

- An equivalence relation R obeys three properties:

1. reflexive: for any $x, x \mathrm{R} x$ is true
2. symmetric: for any x and $y, x \mathrm{R} y$ implies $y \mathrm{R} x$
3. transitive: for any x, y, and $z, x \mathrm{R} y$ and $y \mathrm{R} z$ implies $x \mathrm{R} z$

- Preceding relations are all examples of equivalence relations
- What are not equivalence relations?
\Rightarrow What about "<" on integers? (1 and 2 are violated)
\Rightarrow What about " \leq " on integers? (2 is violated)
\Rightarrow What about "is having an affair with" in a soap opera?
- Victor i.h.a.a.w. Ashley i.h.a.a.w. Brad does not imply

Victor i.h.a.a.w. Brad (i.h.a.a.w. is not transitive)

Equivalence Classes and Disjoint Sets

\downarrow Any equivalence relation R divides all the elements into disjoint sets of "equivalent" items
\star Let \sim be an equivalence relation. Then, if $\mathrm{A} \sim \mathrm{B}$, then A and B are in the same equivalence class.

- Examples:
\Rightarrow On a computer chip, if \sim denotes "electrically connected," then sets of connected components form equivalence classes
\Rightarrow On a map, cites that have two-way roads between them form equivalence classes
\Rightarrow What are the equivalence classes for the relation "Modulo N" applied to all integers?

Equivalence Classes and Disjoint Sets

\uparrow Let \sim be an equivalence relation. Then, if $\mathrm{A} \sim \mathrm{B}$, then A and B are in the same equivalence class.

- Examples:
\Rightarrow The relation "Modulo N " divides all integers in N equivalence classes (for the remainders $0,1, \ldots, \mathrm{~N}-1$)
E.g. Under Mod 5:
$\underline{0} \sim 5 \sim 10 \sim 15 \ldots$
1~6~11~16...
$\underline{2} \sim 7 \sim 12 \sim \ldots$
$\underline{3} \sim 8 \sim 13 \sim \ldots$
$\underline{4} \sim 9 \sim 14 \sim$
(5 equivalence classes denoting remainders 0 through 4 when divided by 5)

Union and Find: Problem Definition

\uparrow Given a set of elements and some equivalence relation ~ between them, we want to figure out the equivalence classes

- Given an element, we want to find the equivalence class it belongs to
\Rightarrow E.g. Under mod 5, 13 belongs to the equivalence class of 3
\Rightarrow E.g. For the map example, want to find the equivalence class of Redmond (all the cities it is connected to)
\uparrow Given a new element, we want to add it to an equivalence class (union)
\Rightarrow E.g. Under mod 5, since $18 \sim 13$, perform a union of 18 with the equivalence class of 13
\Rightarrow E.g. For the map example, Woodinville is connected to Redmond, so add Woodinville to equivalence class of Redmond

Disjoint Set ADT

\uparrow Stores N unique elements

- Two operations:
\Rightarrow Find: Given an element, return the name of its equivalence class
\Rightarrow Union: Given the names of two equivalence classes, merge them into one class (which may have a new name or one of the two old names)
- ADT divides elements into E equivalence classes, $1 \leq \mathrm{E} \leq \mathrm{N}$
\Rightarrow Names of classes are arbitrary
\Leftrightarrow E.g. 1 through N , as long as Find returns the same name for 2 elements in the same equivalence class

Disjoint Set ADT Properties

\rightarrow Disjoint set equivalence property: every element of a DS ADT belongs to exactly one set (its equivalence class)
\downarrow Dynamic equivalence property: the set of an element can change after execution of a union

Example:
Initial Classes = $\{1,4,8\},\{2,3\}$, $\{6\},\{7\}$,
$\{5,9,10\}$
Name of equiv. class underlined

Formal Definition (for Math lovers' eyes only)

\uparrow Given a set $U=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$

- Maintain a partition of U, a set of subsets (or equivalence classes) of U denoted by $\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ such that:
\Rightarrow each pair of subsets S_{i} and S_{j} are disjoint: $\quad S_{i} \cap S_{j}=\varnothing$
\Rightarrow together, the subsets cover $U: \quad U=\bigcup_{i=1}^{k} S_{i}$
\Leftrightarrow each subset has a unique name
- Union(a, b) creates a new subset which is the union of a's subset and b's subset
\uparrow Find(a) returns the unique name for a's subset

Implementation Ideas and Tradeoffs

\downarrow How about an array implementation?
$\Leftrightarrow \mathrm{N}$ element array A : $\mathrm{A}[\mathrm{i}]$ holds the class name for element i
\Rightarrow E.g. if $18 \sim 3$, pick 3 as class name and set $\mathrm{A}[18]=\mathrm{A}[3]=3$
\Rightarrow Running time for $\operatorname{Find}(\mathrm{i})=$? $\quad(\mathrm{i}=$ some element $)$
\Rightarrow Running time for $\operatorname{Union}(\mathrm{i}, \mathrm{j})=$? (i and j are class names)

Implementation Ideas and Tradeoffs

\uparrow How about an array implementation?
$\Rightarrow \mathrm{N}$ element array $\mathrm{A}: \mathrm{A}[\mathrm{i}]$ holds the class name for element i
\Rightarrow E.g. if $18 \sim 3$, pick 3 as class name and set $\mathrm{A}[18]=\mathrm{A}[3]=3$
\Rightarrow Running time for $\operatorname{Find}(\mathrm{i})=\mathbf{O}(\mathbf{1})$ (just return $\mathrm{A}[\mathrm{i}]$)
\Rightarrow Running time for Union $(\mathrm{i}, \mathrm{j})=\mathbf{O}(\mathbf{N})$
If first $\mathrm{N} / 2$ elements have class name 1 and next $\mathrm{N} / 2$ have class name 2 , Union $(1,2)$ needs to change names of $\mathrm{N} / 2$ items
\uparrow How about linked lists?
\Rightarrow One linked list for each equivalence class
\Rightarrow Class name $=$ head of list
\Rightarrow Running time for Union (i, j) and $\operatorname{Find}(\mathrm{i})=$?

Implementation Ideas and Tradeoffs

- How about linked lists?
\Rightarrow One linked list for each class
\Rightarrow Run time for Union $(\mathrm{i}, \mathrm{j})=\mathbf{O}(\mathbf{1})$ (append one list to the other)
\Rightarrow Run time for Find(i) $=\mathbf{O}(\mathbf{N}) \quad$ (must scan all lists in worst case)
- Tradeoff between Union-Find - can we do both in $\mathrm{O}(1)$ time?
$\Rightarrow \mathrm{N}-1$ Unions (the maximum possible) and M Finds $=\mathrm{O}\left(\mathrm{N}^{2}+\mathrm{M}\right)$ for array or $\mathrm{O}(\mathrm{N}+\mathrm{MN})$ for linked lists implementation
\Rightarrow Can we do this in $\mathrm{O}(\mathrm{M}+\mathrm{N})$ time?

Let's find a new Data Structure

\uparrow Intuition: Finding the representative member (= class name) for an element is like the opposite of searching for a key in a given set

- So, instead of trees with pointers from each node to its children, let's use trees with a pointer from each node to its parent
- Such trees are known as Up-Trees

Up-Tree Data Structure

- Each equivalence class (or discrete set) is an up-tree with its root as its representative member
- All members of a given set are nodes in that set's uptree
- Hash table maps input data to a node. E.g. input string to integer index

$\{\mathrm{a}, \mathrm{d}, \mathrm{g}, \mathrm{b}, \mathrm{e}\} \quad\{\mathrm{c}, \mathrm{f}\} \quad\{\mathrm{h}\}$

Up-trees are not necessarily binary!

A neat implementation trick for Up-Trees

\rightarrow Forest of up-trees can easily be stored in an array (call it "up")

- If node names are integers or characters, can use a very simple, perfect hash function: $\operatorname{Hash}(\mathrm{X})=\mathrm{X}$
- up $[\mathrm{X}]=$ parent of X;

Example of Find

Find: Just follow parent pointers to the root!

Runtime $=$?

find(f) $=c$ find $(e)=a$

Array up:

0	(a)	1	(b)	2 (c)	3 (d)	4 (e)	5 (f)	6 (g)
-1	0	-1	0	1	2	-1	-1	7

Example of Union

Union: Just hang one root from the other!
union(c, a)

Runtime $=$?

A more detailed example...

A more detailed example...

A more detailed example...

Union(d,e) - But (you say) d and e are not roots!
May be allowed in some implementations - do Find first to get roots Since $\operatorname{Find}(d)=\operatorname{Find}(e)$, union already done!

Thought-Provoking Question 1: While we're finding e, could we do something to speed up Find(e) next time?
(hold that thought!)

A more detailed example (continued)

A more detailed example...

Union(c,f)

A more detailed example

R. Rao, CSE 326

Implementation of Find and Union

public int Find(int X)
\{ // Assumes $X=$ Hash (X_Element)
// X_Element could be str/char etc.
if (up $[\mathrm{X}]<0$) // Root
return X; //Return root $=$ set name
else
//Find parent
return Find (up [X]);
\}
Runtime of Find: $\underline{O}(\max$ height)
Height depends on previous Unions
Best case: $1-2,1-3,1-4, \ldots \quad O(1)$
Worst case: $2-1,3-2,4-3, \ldots \underline{\mathrm{O}(\mathrm{N})}$ Can we do better?
R. Rao, CSE 326

Let's look back at our example...

Speeding Up Union/Find: Union-by-Size

\downarrow For M Finds and $\mathrm{N}-1$ Unions, worst case time is $\mathrm{O}(\mathrm{MN}+\mathrm{N})$
\Rightarrow Can we speed things up by being clever about growing our up-trees?
\uparrow Idea: In Union, always make root of larger tree the new root

- Why? Minimizes height of the new up-tree

Union(c,a)

Union-by-Size!
R. Rao, CSE 326

Trick for Storing Size Information

\uparrow Instead of storing -1 in root, store up-tree size as negative value in root node

$0 \quad 1$ (a) 2 (b) 3 (c) 4 (d) 5 (e) 6 (f) 7 (g) 8 (h)
Array up:

Union-by-Size Code

```
public void Union(int }\textrm{X},\mathrm{ int Y) {
    //X, Y are root nodes
    //containing (-size) of up-trees
    assert(up[X] < 0);
    assert(up[Y] < 0);
    if (-up[X] > -up[Y]) {
    //update size of X and root of Y
        up[X] += up[Y];
        up[Y] = X;
    }
    else { //size of X <= size of Y
        up [Y] += up [X];
        up [x] = y; New run time of Union = ?
    }
}
New run time of Find \(=\) ?

\section*{Union-by-Size: Analysis}
- Finds are O (max up-tree height) for a forest of up-trees containing N nodes
\(\rightarrow\) Number of nodes in an up-tree of height \(h\) using union-by-size is \(\geq 2^{h}\)
- Pick up-tree with max height
\(\rightarrow\) Then, \(2^{\text {max height }} \leq \mathrm{N}\)
- max height \(\leq \log \mathrm{N}\)
\(\rightarrow\) Find takes \(\mathbf{O}(\log \mathbf{N})\)

Base case: \(h=0\), tree has \(2^{0}=1\) node Induction hypothesis: Assume true for \(h<h^{\prime}\) Induction Step: New tree of height \(h^{\prime}\) was formed via union of two trees of height \(h^{\prime}-1\) Each tree then has \(\geq 2^{h^{\prime}-1}\) nodes by the induction hypothesis
So, total nodes \(\geq 2^{h^{\prime}-1}+2^{h^{\prime}-1}=2^{h^{\prime}}\)
Therefore, True for all \(h\)

\section*{Union-by-Height}
- Textbook describes alternative strategy of Union-by-height
- Keep track of height of each up-tree in the root nodes
- Union makes root of up-tree with greater height the new root
- Same results and similar implementation as Union-by-Size
\(\Rightarrow\) Find is \(\mathrm{O}(\log \mathrm{N})\) and Union is \(\mathrm{O}(1)\)

\section*{Suspense-filled questions to ponder over...}
\(\uparrow\) While doing a find(e), can we do something to speed up future find(e) calls?

\(\checkmark\) How much speedup can we get?
\(\downarrow\) What is the source of the dark matter in the universe?

To be continued next class...
(same place, same time)

\section*{Meanwhile...}

Finish reading chapter 8```

