
1R. Rao, CSE 326

Lecture 19: Swinging from Up-Trees to Graphs

✦ Today’s Agenda:
➭ Smart Union and Find

➧ Union-by-size/height and Path Compression

➭ Run Time Analysis – as tough as it gets!

➭ Introduction to Graphs

✦ Covered in Chapters 8 and 9 in the textbook

Some of the material on these slides are courtesy of: S. Wolfman, CSE 326, 2000

2R. Rao, CSE 326

Recall: Disjoint Set ADT

✦ Disjoint set ADT: Used to represent a collection of sets
containing objects that are related to each other
➭ Relations defined through Union operation
➭ Union merges two sets – their objects become related.
➭ Find returns the “name” of the set an object belongs to

{1,4,8}

{7}

{6}

{5,9,10}
{2,3}

find(4)

8

union(2,6)

{2,3,6}

Example:
Initial Classes =
{1,4,8}, {2,3},
{6}, {7},
{5,9,10}
Name of equiv.
class underlined

3R. Rao, CSE 326

Recall: Up-Tree Data Structure

✦ Each equivalence class (or
discrete set) is an up-tree
with its root as its
representative member

✦ All members of a given set
are nodes in that set’s up-
tree

a c

g

h

d b

e

f

{a,d,g,b,e} {c,f} {h}

NULL NULL NULL

4R. Rao, CSE 326

Example of Find

a c g h

d b

e

f i

find(f) = c
find(e) = a

Find: Just follow parent pointers to the root!

0 -2 0 1 2 -1 -2 7-4

0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)

Array up:

-(Tree size)

Runtime depends
on tree depth

5R. Rao, CSE 326

Example of Union

a c g h

d b

e

f i

union(c,a)

Union: Just hang one root from the other!

0 -6 0 1 2 -1 -2 72

0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)

Array up:
Change a (from -4) to c (= 2), update size

Runtime = O(1)

6R. Rao, CSE 326

Smart Union?

✦ For M Finds and N-1 Unions, worst case time is O(MN+N)
➭ Can we speed things up by being clever about growing our

up-trees?

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

eUnion(c,a)

7R. Rao, CSE 326

Smart Union/Find: Union-by-Size

✦ Idea: In Union, always make root of larger tree the new root

✦ Why? Minimizes height of the new up-tree

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e Union-by-Size!

f

g ha

b c id

e

Union(c,a)

8R. Rao, CSE 326

Union-by-Size: Run-Time Analysis

✦ Finds are O(max up-tree height) for a forest of
up-trees containing N nodes

✦ Number of nodes in an up-tree of height h using
union-by-size is ≥ 2h (prove by induction)
➭ Pick up-tree with max height
➭ Then, N ≥ 2max height → max height ≤ log N

✦ Find takes O(log N) when Union-by-Size is used
➭ Same result with Union-by-Height (see text)

9R. Rao, CSE 326

Smart Find?

a c g h

d b

e

f i

Find(e) = a

If we do M Finds on the same element → O(M log N) time

Can we make Find have side-effects so that next Find will be faster?

Runtime depends
on tree depth

10R. Rao, CSE 326

Introducing…Path Compression

f ga
b

c
d

e

✦ Path Compression: Point everything along path of a Find to root

✦ Reduces height of entire access path to 1: Finds get faster!
➭ Déjà vu?
➭ Idea similar to the one behind your old buddy – the splay tree…

f ga
b

c
d

e

Path compression

Find(e)

11R. Rao, CSE 326

A P.C. example with more meat…

f ha

b

c

d

e

g

Find(e)

i

f ha

c

d

e

g

b

i

12R. Rao, CSE 326

• Trivial modification of original recursive Find
• New running time = ?

public int Find(int X)

{ // Assumes X = Hash(X_Element)

// X_Element could be str/char etc.

if (up[X] < 0) // Root

return X; //Return root = set name

else

//Find parent and update pointer to root

return up[X] = Find(up[X]);

}
Make all nodes along
access path point to root

How to P.C. – Path Compression Code

13R. Rao, CSE 326

• Find still takes O(max up-tree height) worst case
• But what happens to the tree heights over time?
• What is the amortized run time of Find if we do M Finds?

public int Find(int X)

{ // Assumes X = Hash(X_Element)

// X_Element could be str/char etc.

if (up[X] < 0) // Root

return X; //Return root = set name

else

//Find parent and update pointer to root

return up[X] = Find(up[X]);

}
Collapsing the tree by
pointing to root

How to P.C. – Path Compression Code

14R. Rao, CSE 326

What is the amortized run time per operation if we do a
sequence of M Unions or Finds using Union-by-Size & P.C.?

10-second break to solve this problem…

15R. Rao, CSE 326

What is the amortized run time per operation if we do a
sequence of M Unions or Finds using Union-by-Size & P.C.?

If you succeeded in solving this…you shouldn’t be in
this class!

One of the toughest run-time analysis problems ever!

(no, a similar problem won’t be in the final)
Fine print: The final has not been written up yet, so we are not responsible for any statements about
the final made in this lecture or indeed any future lectures, but not including the final review lecture

16R. Rao, CSE 326

Analysis of P.C. with Union-by-Size

✦ R. E. Tarjan (of the up-trees fame) showed that:
➭When both P.C. and Union-by-Size are used, the worst

case run time for a sequence of M operations (Unions or
Finds) is Θ(M α(M,N))

✦ What is α(M,N)?
➭ α(M,N) is the inverse of Ackermann’s function

✦ What is Ackermann’s function?

17R. Rao, CSE 326

Digression: Them slow-growing functions…

✦ How fast does log N grow? log N = 4 for N = 16 = 2
➭ Grows quite slowly

✦ Let log(k) N = log (log (log … (log N))) (k logs)

✦ Let log* N = minimum k such that log(k) N ≤ 1

✦ How fast does log* N grow? log* N = 4 for N = 65536 = 22

➭ Grows very slowly

22

22

18R. Rao, CSE 326

Ackermann and his function

✦ Ackermann created a really explosive function
A(i, j) whose inverse α(M, N) grows very, very
slowly (slower than log* N)

2,for))1,(,1(),(

2for)2,1()1,(

1for 2),1(

≥−−=
≥−=

≥=

jijiAiAjiA

iiAiA

jjA j

 { }NNMiAiNM log)/,(|1min),(>≥=α

Go ahead…try out
some values for i, j

19R. Rao, CSE 326

How slowly does α(M, N) grow?

α(M, N) ≤ 4 for all practical choices of M and N
(α(M, N) = 4 for M far larger than the number of atoms in

the universe (2300)!! (assuming M ≥ N))

Mighty profound…but what in my
dog Skip’s name does all this have
to do with Unions and Finds?

20R. Rao, CSE 326

✦ R. E. Tarjan showed that:
➭When both P.C. and Union-by-Size are used, the worst

case total run time for any sequence of M Unions and
Finds is Θ(M·α(M,N))

✦ Textbook proves weaker result of O(M log* N) time
➭ Requires 6 pages and 8 Lemmas! (Check it out!)

✦ Amortized run time per operation
= total time/no. of operations = Θ(M·α(M,N))/M
= Θ(α(M,N))
≈ Θ(1) for all practical purposes (α(M, N) ≤ 4 for all practical M, N)
≈ constant time!

Back to Smart Unions/Finds

21R. Rao, CSE 326

Summary of Disjoint Set and Union/Find

✦ The Disjoint Set ADT allows us to represent objects that fall
into different equivalence classes or sets

✦ Two main operations: Union of two classes and Find class
name for a given element

✦ Up-Tree data structure allows efficient array implementation
➭ Unions take O(1) worst case time, Finds can take O(N)
➭ Union-by-Size (or by-Height) reduces worst case time for

Find to O(log N)
➭ If we use both Union-by-Size/Height & Path Compression:

➧ Any sequence of M Union/Find operations results in O(1)
amortized time per operation (for all practical purposes)

22R. Rao, CSE 326

Applications of Disjoint Sets

✦ Disjoint sets can be used to represent:
➭ Cities on a map (disjoint sets of connected cities)
➭ Electrical components on chip
➭ Computers connected in a network
➭ Groups of people related to each other by blood
➭ Textbook example: Maze generation using Unions/Finds:

➧ Start with walls everywhere and each cell in a set by itself
➧ Knock down walls randomly and Union cells that become

connected
➧ Use Find to find out if two cells are already connected
➧ Terminate when starting and ending cell are in same set i.e.

connected (or when all cells are in same set)

23R. Rao, CSE 326

We are now ready to tackle
the grandmama of all data structures…

The crème de la crème…

The most general, the all-encompassing…

Graphs and their algorithms!

24R. Rao, CSE 326

What are graphs? (Take 1)

✦ Yes, this is a graph….

✦ But we are interested in a different kind of “graph”

25R. Rao, CSE 326

Motivation for Graphs

✦ Consider the data structures we
have looked at so far…

✦ Linked list: nodes with 1 incoming
edge + 1 outgoing edge

✦ Binary trees/heaps: nodes with 1
incoming edge + 2 outgoing edges

✦ Binomial trees/B-trees: nodes with
1 incoming edge + multiple
outgoing edges

✦ Up-trees: nodes with multiple
incoming edges + 1 outgoing edge

a

gd b

10

96 99

94

97

Value Next
node

Value Next
node

26R. Rao, CSE 326

Motivation for Graphs

✦ What is common among these data structures?

✦ How can you generalize them?

✦ Consider data structures for representing the following
problems…

27R. Rao, CSE 326

Course Prerequisites for CSE at UW

321143

142

322

326

341370

378

401

421

Nodes = courses
Directed edge = prerequisite

28R. Rao, CSE 326

Representing a Maze or Floor Plan of a House

F

B

Nodes = rooms
Edge = door or passage

F

B

29R. Rao, CSE 326

Representing Electrical Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor

30R. Rao, CSE 326

Representing Expressions in Compilers

x1=q+y*z
x2=y*z-q

Naive:

common
subexpression

eliminated:

y z

*

-

q

+

q *

x1 x2

y z

-

q

+

q *

x1 x2

Nodes = symbols/operators
Edges = relationships

y*z calculated twice

31R. Rao, CSE 326

Information Transmission in a Computer Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates

128

140

181
30

16

56

32R. Rao, CSE 326

Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on
connecting highway

UW

33R. Rao, CSE 326

Six Degrees of Separation from Kevin Bacon

Apollo 13

A
pollo 13

F
orest G

um
p

The Princess Bride

The Princess Bride Toy Story

Desperately Seeking Susan
After Hours

Tom
Hanks

Gary
Sinise

Robin
Wright

Wallace
Shawn

Cary
Elwes

Laurie
Metcalf

Rosanna
Arquette

Cheech
Marin

34R. Rao, CSE 326

Soap Opera Relationships

Victor

Ashley

Brad

Wayne

Trisha
Peter

35R. Rao, CSE 326

Graphs: Definition

✦ A graph is simply a collection of nodes plus edges
➭ Linked lists, trees, and heaps are all special cases of graphs

✦ The nodes are known as vertices (node = “vertex”)

✦ Formal Definition: A graph G is a pair (V, E) where
➭ V is a set of vertices or nodes
➭ E is a set of edges that connect vertices

36R. Rao, CSE 326

Graphs: An Example

✦ Here is a graph G = (V, E)
➭ Each edge is a pair (v1, v2), where v1, v2 are vertices in V

V = {A, B, C, D, E, F}

E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

F

D E

37R. Rao, CSE 326

Directed versus Undirected Graphs

✦ If the order of edge pairs (v1, v2) matters, the graph is
directed (also called a digraph): (v1, v2) ≠ (v2, v1)

✦ If the order of edge pairs (v1, v2) does not matter, the graph is
called an undirected graph: in this case, (v1, v2) = (v2, v1)

v1
v2

v1
v2

38R. Rao, CSE 326

Graph Representations

• Space and time are measured in terms of both:

• Number of vertices = |V| and

• Number of edges = |E|

• There are two ways of representing graphs:

• The adjacency matrix representation

• The adjacency list representation

39R. Rao, CSE 326

Graph Representation: Adjacency Matrix

The adjacency matrix representation:

A

B
C

F

D E

A B C D E F

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 1 1 0

1 0 1 0 1 0

0 0 1 1 0 0

0 0 0 0 0 0

M(v, w) =
1 if (v, w) is in E

0 otherwise A

B

C

D

E

F

Space = ?

40R. Rao, CSE 326

Adjacency Matrix for a Digraph

A

B
C

F

D E

A B C D E F

0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

A

B

C

D

E

F

M(v, w) =
1 if (v, w) is in E

0 otherwise

Space = |V|2

41R. Rao, CSE 326

The adjacency list representation: For each v in V,

B D

B D

C

A C E

D

E

A C

L(v) = list of w such that (v, w) is in E

A

B
C

F

D E

Graph Representation: Adjacency List

A

B

C

D

E

F

Space = ?

42R. Rao, CSE 326

A

B
C

F

D E

Graph Representation: Adjacency List

B D

B D

C

A C E

D

E

A C

Space = a |V| + 2 b |E|

a b

A

B

C

D

E

F

43R. Rao, CSE 326

B D

E

D

C

Space = ?

a b

Adjacency List for a Digraph

A

B

C

D

E

F

A

B
C

F

D E

E

Digraph Adjacency List

44R. Rao, CSE 326

B D

E

D

C

Space = a |V| + b |E|

a b

Adjacency List for a Digraph

A

B

C

D

E

F

A

B
C

F

D E

E

Digraph Adjacency List

45R. Rao, CSE 326

Graphs: Problem #1: Topological Sort

321143

142

322

326

341370

378

401

421

Problem: Find an order
in which all these
courses can be taken.
Example: 142, 143,
378, 370, 321, 341, 322,
326, 421, 401 To take a course, all its prerequisites

must be taken first

Graph of course
prerequisites

46R. Rao, CSE 326

Topological Sort Definition

Topological sorting problem: given digraph G = (V, E),
find a linear ordering of its vertices such that:
for any edge (v, w) in E, v precedes w in the ordering

A

B
C

F

D E

How would you Topo-Sort

this digraph given an

adjacency list representation

of G = (V, E)?

47R. Rao, CSE 326

Next Class:
Getting intimate with Topo-sorts

Finding shortest ways to get to your classrooms

To Do:
Homework #4

(to be posted on class web Monday 2/24)

Read and enjoy chapter 9

