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Lecture 19: Swinging from Up-Trees to Graphs

✦ Today’s Agenda:
➭ Smart Union and Find 

➧ Union-by-size/height and Path Compression

➭ Run Time Analysis – as tough as it gets!

➭ Introduction to Graphs

✦ Covered in Chapters 8 and 9 in the textbook

Some of the material on these slides are courtesy of: S. Wolfman, CSE 326, 2000
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Recall: Disjoint Set ADT

✦ Disjoint set ADT: Used to represent a collection of sets 
containing objects that are related to each other
➭ Relations defined  through Union operation
➭ Union merges two sets – their objects become related.
➭ Find returns the “name” of the set an object belongs to

{1,4,8}

{7}

{6}

{5,9,10}
{2,3}

find(4)

8

union(2,6)

{2,3,6}

Example:
Initial Classes = 
{1,4,8}, {2,3}, 
{6}, {7}, 
{5,9,10}
Name of equiv. 
class underlined
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Recall: Up-Tree Data Structure

✦ Each equivalence class (or 
discrete set) is an up-tree 
with its root as its 
representative member

✦ All members of a given set 
are nodes in that set’s up-
tree

a c

g

h

d b

e

f

{a,d,g,b,e} {c,f} {h}

NULL NULL NULL
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Example of Find

a c g h

d b

e

f i

find(f) = c
find(e) = a

Find: Just follow parent pointers to the root!

0 -2 0 1 2 -1 -2 7-4

0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)

Array up:

-(Tree size)

Runtime depends 
on tree depth
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Example of Union

a c g h

d b

e

f i

union(c,a)

Union: Just hang one root from the other!

0 -6 0 1 2 -1 -2 72

0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)

Array up:
Change a (from -4) to c (= 2), update size

Runtime = O(1)
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Smart Union?

✦ For M Finds and N-1 Unions, worst case time is O(MN+N)
➭ Can we speed things up by being clever about growing our 

up-trees?

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

eUnion(c,a)
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Smart Union/Find: Union-by-Size

✦ Idea: In Union, always make root of larger tree the new root

✦ Why? Minimizes height of the new up-tree

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e Union-by-Size!

f

g ha

b c id

e

Union(c,a)
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Union-by-Size: Run-Time Analysis

✦ Finds are O(max up-tree height) for a forest of 
up-trees containing N nodes

✦ Number of nodes in an up-tree of height h using 
union-by-size is ≥ 2h (prove by induction)
➭ Pick up-tree with max height
➭ Then, N ≥ 2max height → max height ≤ log N

✦ Find takes O(log N) when Union-by-Size is used
➭ Same result with Union-by-Height (see text)
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Smart Find?

a c g h

d b

e

f i

Find(e) = a

If we do M Finds on the same element → O(M log N) time

Can we make Find have side-effects so that next Find will be faster?

Runtime depends 
on tree depth
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Introducing…Path Compression

f ga
b

c
d

e

✦ Path Compression: Point everything along path of a Find to root

✦ Reduces height of entire access path to 1: Finds get faster!
➭ Déjà vu? 
➭ Idea similar to the one behind your old buddy – the splay tree…

f ga
b

c
d

e

Path compression

Find(e)
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A P.C. example with more meat…

f ha

b

c

d

e

g

Find(e)

i

f ha

c

d

e

g

b

i
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• Trivial modification of original recursive Find
• New running time = ?

public int Find(int X) 

{ // Assumes X = Hash(X_Element)

// X_Element could be str/char etc.

if (up[X] < 0) // Root

return X; //Return root = set name

else 

//Find parent and update pointer to root

return up[X] = Find(up[X]);

}
Make all nodes along 
access path point to root

How to P.C. – Path Compression Code
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• Find still takes O(max up-tree height) worst case
• But what happens to the tree heights over time?
• What is the amortized run time of Find if we do M Finds?

public int Find(int X) 

{ // Assumes X = Hash(X_Element)

// X_Element could be str/char etc.

if (up[X] < 0) // Root

return X; //Return root = set name

else 

//Find parent and update pointer to root

return up[X] = Find(up[X]);

}
Collapsing the tree by 
pointing to root

How to P.C. – Path Compression Code
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What is the amortized run time per operation if we do a 
sequence of M Unions or Finds using Union-by-Size & P.C.?

10-second break to solve this problem…
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What is the amortized run time per operation if we do a 
sequence of M Unions or Finds using Union-by-Size & P.C.?

If you succeeded in solving this…you shouldn’t be in 
this class!

One of the toughest run-time analysis problems ever!

(no, a similar problem won’t be in the final)
Fine print: The final has not been written up yet, so we are not responsible for any statements about 
the final made in this lecture or indeed any future lectures, but not including the final review lecture
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Analysis of P.C. with Union-by-Size

✦ R. E. Tarjan (of the up-trees fame) showed that:
➭When both P.C. and Union-by-Size are used, the worst 

case run time for a sequence of M operations (Unions or 
Finds) is Θ(M α(M,N))

✦ What is α(M,N)?
➭ α(M,N) is the inverse of Ackermann’s function

✦ What is Ackermann’s function?
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Digression: Them slow-growing functions…

✦ How fast does log N grow? log N = 4 for N = 16 = 2
➭ Grows quite slowly

✦ Let log(k) N = log (log (log … (log N)))    (k logs)

✦ Let log* N = minimum k such that log(k) N ≤ 1

✦ How fast does log* N grow? log* N = 4 for N = 65536 = 22

➭ Grows very slowly

22

22
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Ackermann and his function

✦ Ackermann created a really explosive function 
A(i, j) whose inverse α(M, N) grows very, very 
slowly (slower than log* N)

2,for  ))1,(,1(),(

2for  )2,1()1,(
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Go ahead…try out  
some values for i, j
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How slowly does α(M, N) grow?

α(M, N) ≤ 4 for all practical choices of M and N
(α(M, N) = 4 for M far larger than the number of atoms in 

the universe (2300)!! (assuming M ≥ N))

Mighty profound…but what in my 
dog Skip’s name does all this have 
to do with Unions and Finds? 
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✦ R. E. Tarjan showed that:
➭When both P.C. and Union-by-Size are used, the worst 

case total run time for any sequence of M Unions and 
Finds is Θ(M·α(M,N))

✦ Textbook proves weaker result of O(M log* N) time
➭ Requires 6 pages and 8 Lemmas! (Check it out!)

✦ Amortized run time per operation
= total time/no. of operations = Θ(M·α(M,N))/M 
= Θ(α(M,N))
≈ Θ(1) for all practical purposes (α(M, N) ≤ 4 for all practical M, N)
≈ constant time!

Back to Smart Unions/Finds
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Summary of Disjoint Set and Union/Find

✦ The Disjoint Set ADT allows us to represent objects that fall 
into different equivalence classes or sets

✦ Two main operations: Union of two classes and Find class 
name for a given element

✦ Up-Tree data structure allows efficient array implementation
➭ Unions take O(1) worst case time, Finds can take O(N)
➭ Union-by-Size (or by-Height) reduces worst case time for 

Find to O(log N)
➭ If we use both Union-by-Size/Height & Path Compression:

➧ Any sequence of M Union/Find operations results in O(1) 
amortized time per operation (for all practical purposes)
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Applications of Disjoint Sets

✦ Disjoint sets can be used to represent:
➭ Cities on a map (disjoint sets of connected cities)
➭ Electrical components on chip
➭ Computers connected in a network
➭ Groups of people related to each other by blood
➭ Textbook example: Maze generation using Unions/Finds:

➧ Start with walls everywhere and each cell in a set by itself
➧ Knock down walls randomly and Union cells that become 

connected
➧ Use Find to find out if two cells are already connected
➧ Terminate when starting and ending cell are in same set i.e. 

connected (or when all cells are in same set)
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We are now ready to tackle 
the grandmama of all data structures…

The crème de la crème…

The most general, the all-encompassing…

Graphs and their algorithms!
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What are graphs? (Take 1)

✦ Yes, this is a graph….

✦ But we are interested in a different kind of “graph”
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Motivation for Graphs

✦ Consider the data structures we 
have looked at so far…

✦ Linked list: nodes with 1 incoming 
edge + 1 outgoing edge

✦ Binary trees/heaps: nodes with 1 
incoming edge + 2 outgoing edges

✦ Binomial trees/B-trees: nodes with 
1 incoming edge + multiple 
outgoing edges

✦ Up-trees: nodes with multiple 
incoming edges +  1 outgoing edge

a

gd b

10

96 99

94

97

Value Next
node

Value Next
node
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Motivation for Graphs

✦ What is common among these data structures?

✦ How can you generalize them?

✦ Consider data structures for representing the following 
problems…
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Course Prerequisites for CSE at UW

321143

142

322

326

341370

378

401

421

Nodes = courses
Directed edge = prerequisite
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Representing a Maze or Floor Plan of a House

F

B

Nodes = rooms
Edge = door or passage

F

B
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Representing Electrical Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor
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Representing Expressions in Compilers

x1=q+y*z
x2=y*z-q

Naive:

common
subexpression

eliminated:

y z

*

-

q

+

q *

x1 x2

y z

-

q

+

q *

x1 x2

Nodes = symbols/operators
Edges = relationships

y*z calculated twice
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Information Transmission in a Computer Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates

128

140

181
30

16

56
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Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on 
connecting highway

UW
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Six Degrees of Separation from Kevin Bacon

Apollo 13

A
pollo 13

F
orest G

um
p

The Princess Bride

The Princess Bride Toy Story

Desperately Seeking Susan
After Hours

Tom
Hanks

Gary
Sinise

Robin
Wright

Wallace
Shawn

Cary
Elwes

Laurie
Metcalf

Rosanna
Arquette

Cheech
Marin
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Soap Opera Relationships

Victor

Ashley

Brad

Wayne

Trisha
Peter
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Graphs: Definition

✦ A graph is simply a collection of nodes plus edges
➭ Linked lists, trees, and heaps are all special cases of graphs

✦ The nodes are known as vertices (node = “vertex”)

✦ Formal Definition: A graph G is a pair (V, E) where
➭ V is a set of vertices or nodes
➭ E is a set of edges that connect vertices
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Graphs: An Example

✦ Here is a graph G = (V, E)
➭ Each edge is a pair (v1, v2), where v1, v2 are vertices in V

V = {A, B, C, D, E, F}

E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

F

D E
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Directed versus Undirected Graphs

✦ If the order of edge pairs (v1, v2) matters, the graph is 
directed (also called a digraph): (v1, v2) ≠ (v2, v1) 

✦ If the order of edge pairs (v1, v2) does not matter, the graph is 
called an undirected graph: in this case, (v1, v2) = (v2, v1) 

v1
v2

v1
v2
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Graph Representations

• Space and time are measured in terms of both:

• Number of vertices = |V|   and

• Number of edges = |E|

• There are two ways of representing graphs:

• The  adjacency matrix representation

• The  adjacency list representation
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Graph Representation: Adjacency Matrix

The  adjacency matrix representation:

A

B
C

F

D E

A     B     C     D     E     F

0      1      0      1      0     0     

1      0      1      0      0     0     

0      1      0      1      1     0     

1      0      1      0      1     0     

0      0      1      1      0     0     

0      0      0      0      0     0     

M(v, w)  = 
1     if (v, w) is in E

0     otherwise A

B

C

D

E

F

Space = ?
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Adjacency Matrix for a Digraph

A

B
C

F

D E

A     B     C     D     E     F

0      1      0      1      0     0     

0      0      1      0      0     0     

0      0      0      1      1     0     

0      0      0      0      1     0     

0      0      0      0      0     0     

0      0      0      0      0     0     

A

B

C

D

E

F

M(v, w)  = 
1     if (v, w) is in E

0     otherwise

Space = |V|2
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The  adjacency list representation: For each v in V,

B D

B D

C

A C E

D

E

A C

L(v) = list of w such that (v, w) is in E

A

B
C

F

D E

Graph Representation: Adjacency List

A

B

C

D

E

F

Space = ?
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A

B
C

F

D E

Graph Representation: Adjacency List

B D

B D

C

A C E

D

E

A C

Space = a |V| + 2 b |E|

a b

A

B

C

D

E

F
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B D

E

D

C

Space = ?

a b

Adjacency List for a Digraph

A

B

C

D

E

F

A

B
C

F

D E

E

Digraph Adjacency List

44R. Rao, CSE 326

B D

E

D

C

Space = a |V| + b |E|

a b

Adjacency List for a Digraph

A

B

C

D

E

F

A

B
C

F

D E

E

Digraph Adjacency List
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Graphs: Problem #1: Topological Sort

321143

142

322

326

341370

378

401

421

Problem: Find an order 
in which all these 
courses can be taken.
Example: 142, 143, 
378, 370, 321, 341, 322, 
326, 421, 401 To take a course, all its prerequisites 

must be taken first

Graph of course 
prerequisites
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Topological Sort Definition

Topological sorting problem: given digraph G = (V, E), 
find a linear ordering of its vertices such that:
for any edge (v, w) in E, v precedes w in the ordering

A

B
C

F

D E

How would you Topo-Sort 

this digraph given an 

adjacency list representation 

of G = (V, E)?
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Next Class: 
Getting intimate with Topo-sorts

Finding shortest ways to get to your classrooms

To Do:
Homework #4

(to be posted on class web Monday 2/24)

Read and enjoy chapter 9


