Lecture 19: Swinging from Up-Trees to Graphs

- Today's Agenda:
\Rightarrow Smart Union and Find
- Union-by-size/height and Path Compression
\Rightarrow Run Time Analysis - as tough as it gets!
\Rightarrow Introduction to Graphs
\uparrow Covered in Chapters 8 and 9 in the textbook

Recall: Disjoint Set ADT

\uparrow Disjoint set ADT: Used to represent a collection of sets containing objects that are related to each other
\Rightarrow Relations defined through Union operation
\Leftrightarrow Union merges two sets - their objects become related.
\Rightarrow Find returns the "name" of the set an object belongs to
Example:
Initial Classes $=$ $\{1,4,8\},\{2,3\}$, $\{6\},\{7\}$, $\{5,9,10\}$
Name of equiv. class underlined

Recall: Up-Tree Data Structure

$\{\mathrm{a}, \mathrm{d}, \mathrm{g}, \mathrm{b}, \mathrm{e}\} \quad\{\mathrm{c}, \mathrm{f}\} \quad\{\mathrm{h}\}$

Example of Find

Find: Just follow parent pointers to the root!

Example of Union

Union: Just hang one root from the other!

Runtime $=\mathrm{O}(1)$

Array up:

0 (a)	1 (b)	2 (c)	3 (d)	4 (e)	5 (f)	6 (g)	7 (h)		
2	0	-6	0	1	2	-1	-2	7	

R. Rao, CSE 326

Change a (from -4) to c (=2), update size ${ }_{5}$

Smart Union?

- For M Finds and N-1 Unions, worst case time is O(MN+N)
\Rightarrow Can we speed things up by being clever about growing our up-trees?

Union(c, a)

Smart Union/Find: Union-by-Size

- Idea: In Union, always make root of larger tree the new root
- Why? Minimizes height of the new up-tree

Union-by-Size: Run-Time Analysis

\uparrow Finds are O (max up-tree height) for a forest of up-trees containing N nodes
\star Number of nodes in an up-tree of height h using union-by-size is $\geq 2^{h}$ (prove by induction)
\Rightarrow Pick up-tree with max height
\Rightarrow Then, $\mathrm{N} \geq 2^{\text {max height }} \rightarrow \max$ height $\leq \log \mathrm{N}$
\uparrow Find takes $\mathbf{O}(\log \mathbf{N})$ when Union-by-Size is used
\Rightarrow Same result with Union-by-Height (see text)

Smart Find?

If we do M Finds on the same element $\rightarrow O(M \log N)$ time
Can we make Find have side-effects so that next Find will be faster?

Introducing...Path Compression

- Path Compression: Point everything along path of a Find to root
- Reduces height of entire access path to 1: Finds get faster!
\Rightarrow Déjà vu?
\Rightarrow Idea similar to the one behind your old buddy - the splay tree...

R. Rao, CSE 326

A P.C. example with more meat...

How to P.C. - Path Compression Code

```
public int Find(int X)
{ // Assumes X = Hash(X_Element)
    // X_Element could be str/char etc.
    if (up[X] < 0) // Root
        return X; //Return root = set name
    else
        //Find parent and update pointer to root
        return up[x] = Find(up[x]); Make all nodes along
}
                                    access path point to root
- Trivial modification of original recursive Find
- New running time \(=\) ?

\section*{How to P.C. - Path Compression Code}
public int Find (int \(X\) )
\(\{\) // Assumes \(X=\) Hash (X_Element)
// X_Element could be str/Char etc.
if (up \([\mathrm{X}]<0) / /\) Root
return \(X ; / /\) Return root \(=\) set name
else
//Find parent and update pointer to root
return up \([\mathrm{X}]=\) Find (up \([\mathrm{X}])\);
\(\}\)
- Find still takes O(max up-tree height) worst case
- But what happens to the tree heights over time?
- What is the amortized run time of Find if we do M Finds?
R. Rao, CSE 326

What is the amortized run time per operation if we do a sequence of M Unions or Finds using Union-by-Size \& P.C.?

10 -second break to solve this problem...

What is the amortized run time per operation if we do a sequence of M Unions or Finds using Union-by-Size \& P.C.?

If you succeeded in solving this...you shouldn't be in this class!

One of the toughest run-time analysis problems ever!
(no, a similar problem won't be in the final)
Fine print: The final has not been written up yet, so we are not responsible for any statements about
the final made in this lecture or indeed any future lectures, but not including the final review lecture

\section*{Analysis of P.C. with Union-by-Size}
\(\downarrow\) R. E. Tarjan (of the up-trees fame) showed that:
\(\Rightarrow\) When both P.C. and Union-by-Size are used, the worst case run time for a sequence of M operations (Unions or Finds) is \(\Theta(\mathrm{M} \alpha(\mathrm{M}, \mathrm{N}))\)
- What is \(\alpha(\mathrm{M}, \mathrm{N})\) ?
\(\Rightarrow \alpha(\mathrm{M}, \mathrm{N})\) is the inverse of Ackermann's function
- What is Ackermann's function?

\section*{Digression: Them slow-growing functions...}
- How fast does \(\log \mathrm{N}\) grow? \(\log \mathrm{N}=4\) for \(\mathrm{N}=16=2^{2^{2}}\)
\(\Rightarrow\) Grows quite slowly
- Let \(\log ^{(k)} \mathrm{N}=\log (\log (\log \ldots(\log \mathrm{N}))) \quad(k \log \mathrm{~s})\)
- Let \(\log ^{*} \mathrm{~N}=\) minimum \(k\) such that \(\log ^{(k)} \mathrm{N} \leq 1\)
- How fast does \(\log ^{*} \mathrm{~N}\) grow? \(\log ^{*} \mathrm{~N}=4\) for \(\mathrm{N}=65536=2^{2^{2^{2}}}\) \(\Rightarrow\) Grows very slowly

\section*{Ackermann and his function}

Ackermann created a really explosive function \(A(i, j)\) whose inverse \(\alpha(M, N)\) grows very, very slowly (slower than \(\log ^{*} \mathrm{~N}\) )
\[
A(1, j)=2^{j} \text { for } j \geq 1
\]

Go ahead...try out some values for \(\mathrm{i}, \mathrm{j}\)
\(A(i, 1)=A(i-1,2)\) for \(i \geq 2\)
\(A(i, j)=A(i-1, A(i, j-1))\) for \(i, j \geq 2\)
\[
\alpha(M, N)=\min \{i \geq 1 \mid A(i,\lfloor M / N\rfloor)>\log N\}
\]

\section*{How slowly does \(\alpha(\mathrm{M}, \mathrm{N})\) grow?}
\[
\alpha(\mathrm{M}, \mathrm{~N}) \leq 4 \text { for all practical choices of } \mathrm{M} \text { and } \mathrm{N}
\]
\((\alpha(M, N)=4\) for \(M\) far larger than the number of atoms in the universe \(\left(2^{300}\right)!\) ! (assuming \(\mathrm{M} \geq \mathrm{N}\) ))

Mighty profound...but what in my dog Skip's name does all this have to do with Unions and Finds?

\section*{Back to Smart Unions/Finds}
\(\downarrow\) R. E. Tarjan showed that:
\(\Rightarrow\) When both P.C. and Union-by-Size are used, the worst case total run time for any sequence of \(M\) Unions and Finds is \(\Theta(M \cdot \alpha(M, N))\)
\(\uparrow\) Textbook proves weaker result of \(\mathrm{O}(\mathrm{M}\) log* N\()\) time \(\Rightarrow\) Requires 6 pages and 8 Lemmas! (Check it out!)
- Amortized run time per operation
\(=\) total time \(/\) no. of operations \(=\Theta(\mathrm{M} \cdot \alpha(\mathrm{M}, \mathrm{N})) / \mathrm{M}\)
\(=\Theta(\alpha(\mathrm{M}, \mathrm{N}))\)
\(\approx \Theta(1)\) for all practical purposes \((\alpha(\mathrm{M}, \mathrm{N}) \leq 4\) for all practical \(\mathrm{M}, \mathrm{N})\)
\(\approx\) constant time!

\section*{Summary of Disjoint Set and Union/Find}
- The Disjoint Set ADT allows us to represent objects that fall into different equivalence classes or sets
- Two main operations: Union of two classes and Find class name for a given element
- Up-Tree data structure allows efficient array implementation \(\Rightarrow\) Unions take \(\mathrm{O}(1)\) worst case time, Finds can take \(\mathrm{O}(\mathrm{N})\) \(\Rightarrow\) Union-by-Size (or by-Height) reduces worst case time for Find to \(\mathrm{O}(\log \mathrm{N})\)
\(\Rightarrow\) If we use both Union-by-Size/Height \& Path Compression:
- Any sequence of M Union/Find operations results in O(1) amortized time per operation (for all practical purposes)

\section*{Applications of Disjoint Sets}
\(\downarrow\) Disjoint sets can be used to represent:
\(\Rightarrow\) Cities on a map (disjoint sets of connected cities)
\(\Leftrightarrow\) Electrical components on chip
\(\Rightarrow\) Computers connected in a network
\(\Rightarrow\) Groups of people related to each other by blood
\(\Rightarrow\) Textbook example: Maze generation using Unions/Finds:
- Start with walls everywhere and each cell in a set by itself
- Knock down walls randomly and Union cells that become connected
- Use Find to find out if two cells are already connected
- Terminate when starting and ending cell are in same set i.e. connected (or when all cells are in same set)

\section*{We are now ready to tackle the grandmama of all data structures...}

The crème de la crème...
The most general, the all-encompassing...
Graphs and their algorithms!

\section*{What are graphs? (Take 1)}
\(\uparrow\) Yes, this is a graph....

\(\uparrow\) But we are interested in a different kind of "graph"

\section*{Motivation for Graphs}
- Consider the data structures we have looked at so far...
\(\rightarrow\) Linked list: nodes with 1 incoming edge +1 outgoing edge
\(\rightarrow\) Binary trees/heaps: nodes with 1 incoming edge +2 outgoing edges
- Binomial trees/B-trees: nodes with 1 incoming edge + multiple outgoing edges
- Up-trees: nodes with multiple

Up-trees: nodes with multiple
incoming edges +1 outgoing edge


10


\section*{Motivation for Graphs}
\(\downarrow\) What is common among these data structures?
\(\uparrow\) How can you generalize them?
\(\downarrow\) Consider data structures for representing the following problems...

\section*{Course Prerequisites for CSE at UW}


Representing a Maze or Floor Plan of a House


Nodes \(=\) rooms
Edge = door or passage


\section*{Representing Electrical Circuits}


\section*{Representing Expressions in Compilers}


\section*{Information Transmission in a Computer Network}


\section*{Traffic Flow on Highways}


\section*{Six Degrees of Separation from Kevin Bacon}


\section*{Soap Opera Relationships}


\section*{Graphs: Definition}
\(\downarrow\) A graph is simply a collection of nodes plus edges
\(\Rightarrow\) Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = "vertex")
\(\downarrow\) Formal Definition: A graph \(G\) is a pair \((V, E)\) where
\(\Rightarrow V\) is a set of vertices or nodes
\(\Rightarrow E\) is a set of edges that connect vertices

\section*{Graphs: An Example}
\(\uparrow\) Here is a graph \(G=(V, E)\)
\(\Rightarrow\) Each edge is a pair \(\left(v_{1}, v_{2}\right)\), where \(v_{1}, v_{2}\) are vertices in \(V\)
\(V=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}\)
\(E=\{(\mathrm{A}, \mathrm{B}),(\mathrm{A}, \mathrm{D}),(\mathrm{B}, \mathrm{C}),(\mathrm{C}, \mathrm{D}),(\mathrm{C}, \mathrm{E}),(\mathrm{D}, \mathrm{E})\}\)

R. Rao, CSE 326

\section*{Directed versus Undirected Graphs}
\(\rightarrow\) If the order of edge pairs \(\left(v_{1}, v_{2}\right)\) matters, the graph is directed (also called a digraph): \(\left(v_{1}, v_{2}\right) \neq\left(v_{2}, v_{1}\right)\)

\(\downarrow\) If the order of edge pairs \(\left(v_{1}, v_{2}\right)\) does not matter, the graph is called an undirected graph: in this case, \(\left(v_{1}, v_{2}\right)=\left(v_{2}, v_{1}\right)\)


\section*{Graph Representations}
- Space and time are measured in terms of both:
- Number of vertices \(=|V|\) and
- Number of edges \(=|E|\)
- There are two ways of representing graphs:
- The adjacency matrix representation
- The adjacency list representation
Graph Representation: Adjacency Matrix
The adjacency matrix representation: \(\quad\) Space \(=\) ? \(M(v, w)=\left\{\begin{array}{llllllll}1 & \text { if }(v, w) \text { is in E }\end{array} \quad \begin{array}{lllll}\text { A } & \text { B } & \text { C } & \text { D } & \text { E }\end{array} \quad\right.\) F \(M(v, w)= \begin{cases}1 & \text { otherwise }\end{cases}\)

R. Rao, CSE 326
(F) \begin{tabular}{c} 
A \\
B \\
C \\
E \\
F
\end{tabular}\(\left(\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0\end{array}\right)\)


\section*{Graph Representation: Adjacency List}

The adjacency list representation: For each \(v\) in \(V\), \(L(v)=\) list of \(w\) such that \((v, w)\) is in \(E\)


\section*{Adjacency List for a Digraph}


\section*{Adjacency List for a Digraph}


\section*{Graphs: Problem \#1: Topological Sort}
 326, 421, 401

To take a course, all its prerequisites must be taken first

\section*{Topological Sort Definition}

Topological sorting problem: given digraph \(G=(V, E)\), find a linear ordering of its vertices such that: for any edge \((v, w)\) in \(E, v\) precedes \(w\) in the ordering

(F)

How would you Topo-Sort this digraph given an adjacency list representation of \(G=(V, E)\) ?

Next Class:
Getting intimate with Topo-sorts
Finding shortest ways to get to your classrooms
To Do:
Homework \#4
(to be posted on class web Monday 2/24)
Read and enjoy chapter 9```

