
1R. Rao, CSE 326

CSE 326 Lecture 2: Mathematical Background

Today, we will review:
Logs and exponents
Series
Recursion
Big-Oh notation for analysis of algorithms

Covered in Chapters 1 and 2 of the text

2R. Rao, CSE 326

Logs and exponents

We will be dealing mostly with binary numbers (base 2)

Definition: logX B = A means XA = B

Any base is equivalent to base 2 within a constant factor:

Why?

X

B
BX

2

2

log

log
log =

3R. Rao, CSE 326

Logs and exponents

We will be dealing mostly with binary numbers (base 2)

Definition: logX B = A means XA = B

Any base is equivalent to base 2 within a constant factor:

Why?

Because: Let R = log2 B, S = log2 X, and T = logX B,

2R = B, 2S = X, and XT = B

Then, 2R = B = XT = 2ST i.e. R = ST and therefore, T = R/S.

X

B
BX

2

2

log

log
log =

4R. Rao, CSE 326

Properties of logs

We will assume logs to base 2 unless specified otherwise

log AB = ?

log A/B = ?

log AB = ?

5R. Rao, CSE 326

Properties of logs

We will assume logs to base 2 unless specified otherwise

log AB = log A + log B (note: log AB ≠ log A•log B)

log A/B = log A – log B (note: log A/B ≠ log A / log B)

log AB = B log A (note: log AB ≠ (log A) B = log B A)

6R. Rao, CSE 326

More on logs

log log X < log X < X for all X > 1

log log X = Y means

log X grows slower than X; called a “sub-linear”

function

log 1 = 0, log 2 = 1, log 1024 = 10

X
Y

=22

7R. Rao, CSE 326

Arithmetic Series

Note: S(1) = 1, S(2) = 3, S(3) = 6, S(4) = 10, …

Is there a pattern?

∑
=

==+++=
N

i

iNNS
1

?21)(K

8R. Rao, CSE 326

Arithmetic Series

Is S(N) = N(N+1)/2 ?

Prove by induction (base case: N = 1, S(N) = 1(2)/2 = 1)

Assume true for N = k: S(k) = k(k+1)/2

Suppose N = k+1.

S(k+1) = 1 + 2 + …+ k + (k+1) = S(k) + (k+1)

= k(k+1)/2 + (k+1) = (k+1)(k/2 + 1) =

(k+1)(k+2)/2.

∑
=

==+++=
N

i

iNNS
1

?21)(K

∑
=

+
=

N

i

NN
i

1 2

)1(

9R. Rao, CSE 326

Arithmetic Series

∑
=

==+++=
N

i

iNNS
1

?21)(K

∑
=

+
=

N

i

NN
i

1 2

)1(
Why is this formula useful?

Yes, why
indeed?
(yawn)

10R. Rao, CSE 326

A Sneak Preview of Algorithm Analysis

Consider the following program segment:
for (i = 1; i <= N; i++)
for (j = 1; j <= i; j++)
<print “Hey, wassup?”> // pseudocode for Java/C++ print

How many times is the “print” statement executed?
Or, How many wassup’s will you see?

11R. Rao, CSE 326

A Sneak Preview of Algorithm Analysis

The program segment being analyzed:

for (i = 1; i <= N; i++)
for (j = 1; j <= i; j++)

<print “Hey, wassup?”>
Inner loop executes “print” i times in the ith iteration

There are N iterations in the outer loop (i goes from 1 to N)

Total number of times “print” is executed = ∑
=

+
=

N

i

NN
i

1 2

)1(

12R. Rao, CSE 326

A Sneak Preview of Algorithm Analysis

The program segment being analyzed:

for (i = 1; i <= N; i++)
for (j = 1; j <= i; j++)

<print “Hey, wassup?”>

Total number of times “print” is executed =

Running time of the program is proportional to
N(N+1)/2 for all N.

∑
=

+
=

N

i

NN
i

1 2

)1(

Congrats - You just analyzed
your first program!

13R. Rao, CSE 326

Other Important Series (know them well!)

Sum of squares:

Sum of exponents:

Harmonic series (k = -1):

loge N (or ln N) is the natural log of N

Geometric series:

N largefor
36

)12)(1(3

1

2 NNNN
i

N

i

≈
++

=∑
=

-1k and N largefor
|1|

1

1

≠
+

≈
+

=
∑ k

N
i

kN

i

k

N largefor log
1

1

N
i e

N

i

≈∑
=

1

11

0 −
−

=
+

=
∑

A

A
A

NN

i

i

14R. Rao, CSE 326

Recursion

A function that calls itself is said to be recursive
E.g. Recursive procedure “sum” in the first lecture

Recursion may be a natural way to program certain
functions that involve repetitive calculations (as
compared to iteration by “for” or “while” loops)

Classic example: Fibonacci numbers Fn

1, 1, 2, 3, 5, 8, 13, 21, 34, …

First two are: F0 = F1 = 1
Rest are sum of preceding two
Fn = Fn-1 + Fn-2 (n > 1)

Leonardo Pisano
Fibonacci (1170-1250)

15R. Rao, CSE 326

Recursive Procedure for Fibonacci Numbers

public static int fib(int i) {
if (i < 0) return 0; //invalid input
if (i == 0 || i == 1) return 1; //base cases
else return fib(i-1)+fib(i-2);
}

Easy to write: looks like the definition of Fn

But, can you spot a big problem?

16R. Rao, CSE 326

Recursive Calls of Fibonacci Procedure

Wastes precious time by re-computing fib(N-i) multiple
times, for i = 2, 3, 4, etc.!

fib(N)

fib(N-1)

fib(N-2)

fib(N-3)

17R. Rao, CSE 326

Iterative Procedure for Fibonacci Numbers

public static int fib_iter(int i) {
int fib0 = 1, fib1 = 1, fibj = 1;
if (i < 0) return 0; //invalid input
for (int j = 2; j <= i; j++) { //calculate all fib nos. up to i

fibj = fib0 + fib1;
fib0 = fib1;
fib1 = fibj;

}
return fibj;

}

More variables and more bookkeeping but avoids repetitive
calculations and saves time.

How much time is saved over the recursive procedure?
Answer in next class…

18R. Rao, CSE 326

Recursion Summary

Recursion may simplify programming, but beware of
generating large numbers of calls

Function calls can be expensive in terms of time and space
There is a hidden space cost associated with the system’s stack

Be sure to get the base case(s) correct!

Each step must get you closer to the base case

You may use induction to prove your program is correct
See example in previous lecture

19R. Rao, CSE 326

Motivation for Big-Oh Notation

Suppose you are given two algorithms A and B for
solving a problem

Here is the running time TA(N) and TB(N) of A and B as a
function of input size N:

Which algorithm

would you choose?

TA

TB

R
un

 T
im

e

Input Size N

20R. Rao, CSE 326

Motivation for Big-Oh Notation (cont.)

For large N, the running time of A and B is:

R
un

 T
im

e

Input Size N

Now which

algorithm would

you choose?

TA(N) = 50N

TB(N) = N2

21R. Rao, CSE 326

Motivation for Big-Oh: Asymptotic Behavior

In general, what really matters is the “asymptotic”
performance as N →∞, regardless of what happens for
small input sizes N.

Performance for small input sizes may matter in practice,
if you are sure that small N will be common

This is usually not the case for most applications

Given functions T1(N) and T2(N) that define the running
times of two algorithms, we need a way to decide which
one is better (i.e. asymptotically smaller)

Big-Oh notation

22R. Rao, CSE 326

Big-Oh Notation

T(N) = O(f(N)) if there are positive constants c and n0

such that T(N) ≤ cf(N) for N ≥ n0.

We say that T(N) is “big-oh” of f(N) (or, order of f(N))

Example 1: Suppose T(N) = 50N. Then, T(N) = O(N)
Why?

23R. Rao, CSE 326

Big-Oh Example 2

T(N) = O(f(N)) if there are positive constants c and n0 such
that T(N) ≤ cf(N) for N ≥ n0.

We say that T(N) is “big-oh” of f(N) (or, order of f(N))

Example 1: Suppose T(N) = 50N. Then, T(N) = O(N)
Choose c = 50 and n0 = 1 (many other choices work too!)

Example 2: Suppose T(N) = 50N+11. Then, T(N) = O(N)
Why?

24R. Rao, CSE 326

Big-Oh Example 3

T(N) = O(f(N)) if there are positive constants c and n0

such that T(N) ≤ cf(N) for N ≥ n0.

Example 2: Suppose T(N) = 50N+11. Then, T(N) = O(N)
Why?
T(N) = 50N+11 ≤ 50N+11N = 61N for N ≥ 1.
So, c = 61 and n0 = 1 works

Example 3: TA(N) = N+1, TB(N) = N2.

Show that TA(N) = O(TB(N)): what works for c and n0?

25R. Rao, CSE 326

Big-Oh Example 3

T(N) = O(f(N)) if there are positive constants c and n0
such that T(N) ≤ cf(N) for N ≥ n0.

Example 3: TA(N) = N+1, TB(N) = N2.

TA(N) = O(TB(N)): choose c = 1 and n0 = 2 or

choose c = 2 and n0 = 1 or

choose c = 326 and n0 = 322 etc.

but not: c = 0.5 and n0 = 2 or

c = 1 and n0 = 1

26R. Rao, CSE 326

Big-Oh Example 4

T(N) = O(f(N)) if there are positive constants c and n0

such that T(N) ≤ cf(N) for N ≥ n0.

Example 4:

Is T(N) = O(N)? O(N2)? O(N3)?

2

)1(
)(

+
=

NN
NT

27R. Rao, CSE 326

Big-Oh Example 4

T(N) = O(f(N)) if there are positive constants c and n0

such that T(N) ≤ cf(N) for N ≥ n0.

Example 4:

T(N) = O(N2)

2

)1(
)(

+
=

NN
NT

22
2

2
222

)1(
)(NNN

NNNN
NT ≤+≤+=

+
= for N ≥ 0

(so, choose c = 2 and n0 = 1)

(Note: T(N) is also O(N3)! Why?)

28R. Rao, CSE 326

Example of Application to Run Time Analysis

Recall: Our dumb printing program segment:

for (i = 1; i <= N; i++)
for (j = 1; j <= i; j++)

<print “Hey, wassup?”>
Running time is proportional to number of times print
statement is executed =

Runs in “Quadratic time”

)(
2

)1(2

1

NO
NN

i
N

i

=
+

=∑
=

29R. Rao, CSE 326

Common functions we will encounter…

O(2N)Exponential

O(N3)Cubic

O(N2)Quadratic

O(N log N)N log N

O(N)Linear

O((log N)2)Log squared

O(log N)Logarithmic

O(log log N)Log log

O(1)Constant

Big-OhName

}Polynomial timeIn
cr

ea
si

ng
 c

os
t

30R. Rao, CSE 326

Next Lecture: Using Big-Oh for Algorithm Analysis

To do:

Finish reading Chapters 1 and 2

Start (and Finish!) Homework #1

