CSE 326 Lecture 2: Mathematical Background

+ Today, we will review:
< Logs and exponents
< Series
< Recursion
< Big-Oh notation for analysis of algorithms

+ Covered in Chapters 1 and 2 of the text

R. Reo, CSE 326

L ogs and exponents

+ Wewill be dealing mostly with binary numbers (base 2)
+ Definition: log, B = A means XA =B
+ Any base is equivalent to base 2 within a constant factor:

log, B=292B
log, X

+ Why?

R. Reo, CSE 326




L ogs and exponents

+ Wewill be dealing mostly with binary numbers (base 2)
+ Definition: log, B = A means XA =B
+ Any base is equivalent to base 2 within a constant factor:
log, B
log, B=—2—
+ Why?
+ Because: Let R=1log, B, S=1log, X, and T = logy B,
»2R=B,25=X,and XT=B
Then, 2R =B = XT =25T j.e. R = ST and therefore, T = R/S.

R. Rao, CSE 326 3

Properties of logs

+ Wewill assume logsto 2 unless specified otherwise
+ logAB="?

+ logA/B="?

+ logAB=7?

R. Rao, CSE 326 4




Properties of logs

+ We will assume logs to base 2 unless specified otherwise
+ logAB =log A +log B (note: log AB # log Aslog B)

+ logA/B=Ilog A -logB (note: log A/B # log A / log B)
+ logAB=BlogA (note log AB = (logA)B=IlogBA)

R. Rao, CSE 326 5

More on logs

+ loglogX <logX <X foral X>1

> loglog X = Y means 22 = X
< log X grows slower than X; called a*“sub-linear”
function

+ log1=0,log2=1,log1024 =10

R. Rao, CSE 326 6




Arithmetic Series

N
* S(N)=1+2+...+N=>i=?

i=1

+ Note: S(1) = 1, S(2) = 3, S(3) = 6, S(4) = 10, ...
< Isthere a pattern?

R. Reo, CSE 326

Arithmetic Series

+ S(N)=1+2+...+N :ii =7
i=1
+ IsS(N) = N(N+1)/2?
< Prove by induction (basecase: N =1, S(N) = 1(2)/2=1)
< Assumetruefor N = k: S(k) = k(k+1)/2
< Suppose N = k+1.
@ Sk+l)=1+2+ ...+ Kk+ (k+1) = S(k) + (k+1)
= k(k+1)/2 + (k+1) = (k+D)(k/l2 + 1) =
(k+1D)(k+2)/12. «

ZNl N(N+1)

R. Rao CSE 326




Arithmetic Series

N
* S(N)=1+2+...+N=>i=?

i=1

. ZNl' N(N +1)

i=1

Why is this formula useful ?

R. Reo, CSE 326

A Sneak Preview of Algorithm Analysis

+ Consider the following program segment:
for(i=1;i<=N;i++)
for(G=1;j<=i; j++)
<print “Hey, wassup?”> // pseudocode for Java/C++ print
+ How many timesisthe “print” statement executed?
< Or, How many wassup’ s will you see?

R. Rao, CSE 326 10




A Sneak Preview of Algorithm Analysis

+ The program segment being analyzed:
for(i=1;i<=N;i++)
forG=1;j<=1i; j++)
<print “Hey, wassup?”>
+ Inner loop executes “print” i timesin the ith iteration

+ Thereare N iterations in the outer loop (i goes from 1 to N)
N(N+2)

N
+ Tota number of times “print” is executed = Zi ==
i=1

R. Rao, CSE 326 11

A Sneak Preview of Algorithm Analysis

+ The program segment being analyzed:
for(i=1;i<=N;i++)
forG=1;j<=1i; j++)
<print “Hey, wassup?”>
L N N(N+2)
+ Total number of times “print” isexecuted = Y i = >
i=1
4+ Running time of the program is proportional to
N(N+1)/2 for all N.

Congrats - You just analyzed
your first program!

R. Rao, CSE 326 12




Other Important Series (know them well!)

+ Sum of squares: ZN:izz N(N+1)(2N+1)zN—3forIargeN
i=1 6 3

N ) Nk+l
SRR for largeN and k = -1
+ Sum of exponents: .21: [k+1| g

N
1
+ Harmonic series (k = -1): Zi*zlogeNforlargeN
i=1
< log, N (or InN) is the natural log of N

N . AN+1_1
+ Geometric seriess D) A =———

i A-1
R. Rao, CSE 326 13
Recursion

+ A function that calls itself is said to be recursive
< E.g. Recursive procedure “sum” in thefirst lecture

+ Recursion may be a natural way to program certain
functions that involve repetitive calculations (as
compared to iteration by “for” or “while” loops)

+ Classic example: Fibonacci numbers F,
1,1,235813,21,34,.. )O0o @
|
@ Firsttwoare: Fy=F; =1 :
< Rest are sum of preceding two

” Fn - Fn_l * Fn-2 (n g 1) Leonardo Pisano

R. Rao, CSE 326 Fibonacci (1170-1250)

14




Recursive Procedure for Fibonacci Numbers

+ public static int fib(int i) {
if (i < 0) return 0; //invalid input

if i==0]|]i==1)return 1; //base cases
else return fib(i-1)+fib(i-2);
by

+ Easy to write: looks like the definition of F,
+ But, can you spot a big problem?

R. Rao, CSE 326 15

Recursive Calls of Fibonacci Procedure

N D fib(N)
N-1 ,_(S \ fib(N-1)
2 @D A b
N-3 @l (L\ \ fib(N-3)
SrArYY W 3

+ Wastes precious time by re-computing fib(N-i) multiple
times, fori =2, 3, 4, etc.!

R. Rao, CSE 326 16




Iterative Procedure for Fibonacci Numbers

+ public static int fib_iter(int i) {
int fib0 = 1, fibl =1, fibj = 1;
if (i < 0) return 0; //invalid input
for (intj = 2; j <=1i; j++) { //calculate all fib nos. up to i
fibj = fib0 + fib1;
fib0 = fib1;
fibl = fibj;

return fibj;

+ More variables and more bookkeeping but avoids repetitive
calculations and saves time.
< How much time is saved over the recursive procedure?
< Answer in next class...

R. Rao, CSE 326 17

Recursion Summary

+ Recursion may simplify programming, but beware of
generating large numbers of calls
< Function calls can be expensive in terms of time and space
< Thereis a hidden space cost associated with the system’ s stack

+ Besureto get the base case(s) correct!
+ Each step must get you closer to the base case

+ You may use induction to prove your program is correct
< See examplein previous lecture

R. Rao, CSE 326 18




Motivation for Big-Oh Notation

+ Suppose you are given two algorithms A and B for
solving a problem

+ Hereistherunning time T,(N) and Tg(N) of A and B asa
function of input size N: —

Which algorithm
would you choose?

Run Time

4
R. Rep, CSE 326 Input Size N 19

Motivation for Big-Oh Notation (cont.)

+ For large N, the running time of A and B is:

500 T
4000k 1
o 1 Now which
=g | _ ] .
E Ta(N) = 50N algorithm would
2500 4
>
T oo} you choose?
1500
1000} TB(N) =N?
"
R R )
Input Size N

R. Rao, CSE 326 20




Motivation for Big-Oh: Asymptotic Behavior

+ Ingeneral, what really mattersisthe “asymptotic”
performance as N — oo, regardless of what happens for
small input sizes N.

+ Performance for small input sizes may matter in practice,
if you are sure that small N will be common
< Thisisusually not the case for most applications

+ Given functions T,(N) and T,(N) that define the running
times of two agorithms, we need a way to decide which
oneis better (i.e. asymptotically smaller)

< Big-Oh notation

R. Reo, CSE 326

21

Big-Oh Notation

+ T(N) = O(f(N)) if there are positive constants ¢ and n,
such that T(N) < cf(N) for N > n,,.

+ We say that T(N) is “big-oh” of f(N) (or, order of f(N))

+ Example 1: Suppose T(N) = 50N. Then, T(N) = O(N)
< Why?

R. Reo, CSE 326

22




Big-Oh Example 2

+ T(N) = O(f(N)) if there are positive constants ¢ and n, such
that T(N) < cf(N) for N > n,,.

+ We say that T(N) is “big-oh” of f(N) (or, order of f(N))

+ Example 1: Suppose T(N) = 50N. Then, T(N) = O(N)
< Choosec=50and ny =1 (many other choices work too!)

+ Example 2: Suppose T(N) = 50N+11. Then, T(N) = O(N)
< Why?

R. Rao, CSE 326 23

Big-Oh Example 3

+ T(N) = O(f(N)) if there are positive constants ¢ and n,
such that T(N) < cf(N) for N > n,,.

+ Example 2: Suppose T(N) = 50N+11. Then, T(N) = O(N)
< Why?
% T(N) = 50N+11 < 50N+11N = 61N for N > 1.
< So, ¢c= 61 and ny = 1 works

+ Example 3: To(N) = N+1, Tg(N) = N2,
Show that T,(N) = O(Tg(N)): what works for ¢ and n,?

R. Rao, CSE 326 24




Big-Oh Example 3

+ T(N) = O(f(N)) if there are positive constants ¢ and n,
such that T(N) < cf(N) for N > n,,.

+ Example 3: To(N) = N+1, Tg(N) = N2,

TA(N) =O(Tg(N)): choosec=1andn,=2 or
choosec=2andn,=1 or
choose ¢ = 326 and n, = 322 €&tc.
but not: c=0.5and ny =2 or

c=landny,=1

R. Rao, CSE 326 25

Big-Oh Example 4

+ T(N) = O(f(N)) if there are positive constants ¢ and n,
such that T(N) < cf(N) for N > n,,.

N(N +1)

+ Example4: T(N)= >

IST(N) = O(N)? O(N2)? O(N3)?

R. Rao, CSE 326 26




Big-Oh Example 4

+ T(N) = O(f(N)) if there are positive constants ¢ and n,
such that T(N) < cf(N) for N > n,,.

N(N +1)

+ Example4: T(N) = >

T(N) = O(N2)
N(N+1) N? N

+—<N?+N<2N? forN>0
2 2 2

(so, choosec=2and n, = 1)

T(N)=

R. Reo, CSE 326 (Note: T(N) isalso O(N3)! Why?) 21

Example of Application to Run Time Analysis

4+ Recall: Our dumb printing program segment:
for(i=1;i<=N;i++)
forG=1;j<=1i;j++)
<print “Hey, wassup?”>

+ Running time is proportional to number of times print
statement is executed =

> =—N('\;+1) — O(N?)

4+ Runsin “Quadratic time’

R. Rao, CSE 326 28




Common functions we will encounter ...

Increasing cost

Name Big-Oh
Constant oD
Loglog O(log log N)
Logarithmic | O(log N)
Log squared | O((log N)?)
Linear O(N)

N log N O(N log N)
Quadratic O(N?)

Cubic O(N3)
Exponential | O(2V)

R. Reo, CSE 326

Polynomial time

29

Next Lecture: Using Big-Oh for Algorithm Analysis

R. Reo, CSE 326

To do:

Finish reading Chapters 1 and 2
Start (and Finish!) Homework #1

30




