CSE 326 Lecture 2: Mathematical Background

- Today, we will review:
\Rightarrow Logs and exponents
\Rightarrow Series
\Rightarrow Recursion
\Rightarrow Big-Oh notation for analysis of algorithms
\uparrow Covered in Chapters 1 and 2 of the text

Logs and exponents

\uparrow We will be dealing mostly with binary numbers (base 2)
\downarrow Definition: $\log _{X} \mathrm{~B}=\mathrm{A}$ means $\mathrm{X}^{\mathrm{A}}=\mathrm{B}$
\uparrow Any base is equivalent to base 2 within a constant factor:
$\log _{X} B=\frac{\log _{2} B}{\log _{2} X}$

- Why?

Logs and exponents

\uparrow We will be dealing mostly with binary numbers (base 2)
\rightarrow Definition: $\log _{X} B=A$ means $X^{A}=B$
\downarrow Any base is equivalent to base 2 within a constant factor:

$$
\log _{X} B=\frac{\log _{2} B}{\log _{2} X}
$$

- Why?
\uparrow Because: Let $\mathrm{R}=\log _{2} \mathrm{~B}, \mathrm{~S}=\log _{2} \mathrm{X}$, and $\mathrm{T}=\log _{\mathrm{X}} \mathrm{B}$, $\Rightarrow 2^{R}=B, 2^{S}=X$, and $X^{T}=B$
Then, $2^{R}=B=X^{T}=2^{S T}$ i.e. $R=S T$ and therefore, $T=R / S$.

Properties of logs

\downarrow We will assume logs to base 2 unless specified otherwise
$-\log \mathrm{AB}=$?
$-\log \mathrm{A} / \mathrm{B}=$?
$\uparrow \log \mathrm{A}^{\mathrm{B}}=$?

Properties of logs

\downarrow We will assume logs to base 2 unless specified otherwise
$\uparrow \log \mathrm{AB}=\log \mathrm{A}+\log \mathrm{B} \quad($ note: $\log \mathrm{AB} \neq \log \mathrm{A} \bullet \log \mathrm{B})$
$\uparrow \log \mathrm{A} / \mathrm{B}=\log \mathrm{A}-\log \mathrm{B} \quad($ note: $\log \mathrm{A} / \mathrm{B} \neq \log \mathrm{A} / \log \mathrm{B})$
$\uparrow \log \mathrm{A}^{\mathrm{B}}=\mathrm{B} \log \mathrm{A} \quad\left(\right.$ note: $\left.\log \mathrm{A}^{\mathrm{B}} \neq(\log \mathrm{A})^{\mathrm{B}}=\log { }^{\mathrm{B}} \mathrm{A}\right)$

$\rightarrow \log \log \mathrm{X}<\log \mathrm{X}<\mathrm{X}$ for all $\mathrm{X}>1$
$\Rightarrow \log \log X=Y$ means $2^{2^{Y}}=X$
$\Rightarrow \log \mathrm{X}$ grows slower than X ; called a "sub-linear" function
$\rightarrow \log 1=0, \log 2=1, \log 1024=10$

Arithmetic Series

+ $S(N)=1+2+\ldots+N=\sum_{i=1}^{N} i=$?
- Note: $S(1)=1, S(2)=3, S(3)=6, S(4)=10, \ldots$
\Rightarrow Is there a pattern?

Arithmetic Series

+ $S(N)=1+2+\ldots+N=\sum_{i=1}^{N} i=$?
\uparrow Is $\mathrm{S}(\mathrm{N})=\mathrm{N}(\mathrm{N}+1) / 2$?
\Rightarrow Prove by induction (base case: $\mathrm{N}=1, \mathrm{~S}(\mathrm{~N})=1(2) / 2=1$)
\Rightarrow Assume true for $\mathrm{N}=\mathrm{k}: \mathrm{S}(\mathrm{k})=\mathrm{k}(\mathrm{k}+1) / 2$
\Rightarrow Suppose N $=k+1$.
$\Rightarrow S(k+1)=1+2+\ldots+k+(k+1)=S(k)+(k+1)$
$=\mathrm{k}(\mathrm{k}+1) / 2+(\mathrm{k}+1)=(\mathrm{k}+1)(\mathrm{k} / 2+1)=$ $(k+1)(k+2) / 2$. \checkmark
- $\sum_{i=1}^{N} i=\frac{N(N+1)}{2}$
R. Rao, CSE 326

Arithmetic Series

+ $S(N)=1+2+\ldots+N=\sum_{i=1}^{N} i=$?
+ $\sum_{i=1}^{N} i=\frac{N(N+1)}{2} \quad$ Why is this formula useful?

A Sneak Preview of Algorithm Analysis

\uparrow Consider the following program segment:

$$
\begin{aligned}
& \text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{N} ; \mathrm{i}++) \\
& \text { for }(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++)
\end{aligned}
$$

<print "Hey, wassup?"> // pseudocode for Java/C++ print
\downarrow How many times is the "print" statement executed?
\Rightarrow Or, How many wassup's will you see?

A Sneak Preview of Algorithm Analysis

- The program segment being analyzed:

$$
\begin{aligned}
& \text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{N} ; \mathrm{i}++) \\
& \text { for }(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++) \\
& \quad \text { <print "Hey, wassup?"> }
\end{aligned}
$$

- Inner loop executes "print" i times in the $i^{\text {th }}$ iteration
- There are N iterations in the outer loop (i goes from 1 to N)
- Total number of times "print" is executed $=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}$

A Sneak Preview of Algorithm Analysis

- The program segment being analyzed:

$$
\begin{aligned}
& \text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{N} ; \mathrm{i}++) \\
& \text { for }(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++) \\
& \quad \text { <print "Hey, wassup?"> }
\end{aligned}
$$

- Total number of times "print" is executed $=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}$
\leftrightarrow Running time of the program is proportional to $\mathrm{N}(\mathrm{N}+1) / 2$ for all N .

Congrats - You just analyzed your first program!

Other Important Series (know them well!)

- Sum of squares: $\sum_{i=1}^{N} i^{2}=\frac{N(N+1)(2 N+1)}{6} \approx \frac{N^{3}}{3}$ for large N
- Sum of exponents: $\sum_{i=1}^{N} i^{k} \approx \frac{N^{k+1}}{|k+1|}$ for large N and $\mathrm{k} \neq-1$

↔ Harmonic series $(k=-1): \sum_{i=1}^{N} \frac{1}{i} \approx \log _{e} N$ for large N
$\Rightarrow \log _{e} N($ or $\ln N)$ is the natural \log of N
\downarrow Geometric series: $\sum_{i=0}^{N} A^{i}=\frac{A^{N+1}-1}{A-1}$

Recursion

\rightarrow A function that calls itself is said to be recursive
\Rightarrow E.g. Recursive procedure "sum" in the first lecture

- Recursion may be a natural way to program certain functions that involve repetitive calculations (as compared to iteration by "for" or "while" loops)
\downarrow Classic example: Fibonacci numbers F_{n}

\Rightarrow First two are: $\mathrm{F}_{0}=\mathrm{F}_{1}=1$
\Rightarrow Rest are sum of preceding two
$\Rightarrow \mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}(\mathrm{n}>1)$

Recursive Procedure for Fibonacci Numbers

- public static int fib(int i) \{
if ($\mathrm{i}<0$) return 0; //invalid input
if ($\mathrm{i}==0| | \mathrm{i}==1$) return 1 ; //base cases
else return fib(i-1)+fib(i-2);
\}
\downarrow Easy to write: looks like the definition of F_{n}
\uparrow But, can you spot a big problem?

Recursive Calls of Fibonacci Procedure

- Wastes precious time by re-computing fib(N-i) multiple times, for $\mathrm{i}=2,3,4$, etc.!

Iterative Procedure for Fibonacci Numbers

```
- public static int fib_iter(int i) \{
    int fib0 \(=1\), fib1 \(=1\), fibj \(=1\);
        if ( \(\mathrm{i}<0\) ) return 0; //invalid input
        for (int \(\mathrm{j}=2 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++\) ) \(\{/ /\) calculate all fib nos. up to i
            fibj \(=\) fib0 + fib1;
            fib0 = fib1;
            fib1 = fibj;
        \}
        return fibj;
    \}
```

- More variables and more bookkeeping but avoids repetitive calculations and saves time.
\Rightarrow How much time is saved over the recursive procedure?
\Rightarrow Answer in next class...

Recursion Summary

\uparrow Recursion may simplify programming, but beware of generating large numbers of calls
\Rightarrow Function calls can be expensive in terms of time and space
\Rightarrow There is a hidden space cost associated with the system's stack
\uparrow Be sure to get the base case(s) correct!

- Each step must get you closer to the base case
\uparrow You may use induction to prove your program is correct
\Rightarrow See example in previous lecture

Motivation for Big-Oh Notation

- Suppose you are given two algorithms A and B for solving a problem
\uparrow Here is the running time $\mathrm{T}_{\mathrm{A}}(\mathrm{N})$ and $\mathrm{T}_{\mathrm{B}}(\mathrm{N})$ of A and B as a function of input size N :

Which algorithm would you choose?

Motivation for Big-Oh Notation (cont.)

\uparrow For large N , the running time of A and B is:

Motivation for Big-Oh: Asymptotic Behavior

- In general, what really matters is the "asymptotic" performance as $\mathrm{N} \rightarrow \infty$, regardless of what happens for small input sizes N .
- Performance for small input sizes may matter in practice, if you are sure that small N will be common \Rightarrow This is usually not the case for most applications
\uparrow Given functions $T_{1}(N)$ and $T_{2}(N)$ that define the running times of two algorithms, we need a way to decide which one is better (i.e. asymptotically smaller)
\Rightarrow Big-Oh notation

Big-Oh Notation

$\rightarrow \mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$ if there are positive constants c and n_{0} such that $T(N) \leq \operatorname{cf}(N)$ for $N \geq n_{0}$.

- We say that $T(N)$ is "big-oh" of $f(N)$ (or, order of $f(N)$)
\downarrow Example 1: Suppose $T(N)=50 N$. Then, $T(N)=O(N)$ \Rightarrow Why?

Big-Oh Example 2

$\rightarrow T(N)=O(f(N))$ if there are positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \leq \mathrm{cf}(\mathrm{N})$ for $\mathrm{N} \geq \mathrm{n}_{0}$.

- We say that $T(N)$ is "big-oh" of $f(N)$ (or, order of $f(N)$)
\uparrow Example 1: Suppose $T(N)=50 N$. Then, $T(N)=O(N)$
\Rightarrow Choose $\mathrm{c}=50$ and $\mathrm{n}_{0}=1 \quad$ (many other choices work too!)
\downarrow Example 2: Suppose $T(N)=50 N+11$. Then, $T(N)=O(N)$ \Rightarrow Why?

Big-Oh Example 3

$\rightarrow \mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$ if there are positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \leq \operatorname{cf}(\mathrm{N})$ for $\mathrm{N} \geq \mathrm{n}_{0}$.
\star Example 2: Suppose $T(N)=50 N+11$. Then, $T(N)=O(N)$
\Rightarrow Why?
$\Rightarrow \mathrm{T}(\mathrm{N})=50 \mathrm{~N}+11 \leq 50 \mathrm{~N}+11 \mathrm{~N}=61 \mathrm{~N}$ for $\mathrm{N} \geq 1$.
\Rightarrow So, $\mathrm{c}=61$ and $\mathrm{n}_{0}=1$ works
\uparrow Example 3: $\mathrm{T}_{\mathrm{A}}(\mathrm{N})=\mathrm{N}+1, \mathrm{~T}_{\mathrm{B}}(\mathrm{N})=\mathrm{N}^{2}$.
Show that $T_{A}(N)=O\left(T_{B}(N)\right)$: what works for c and n_{0} ?

Big-Oh Example 3

- $\mathrm{T}(\mathrm{N})=\mathrm{O}\left(\mathrm{f}(\mathrm{N})\right.$) if there are positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \leq \operatorname{cf}(\mathrm{N})$ for $\mathrm{N} \geq \mathrm{n}_{0}$.
- Example 3: $\mathrm{T}_{\mathrm{A}}(\mathrm{N})=\mathrm{N}+1, \mathrm{~T}_{\mathrm{B}}(\mathrm{N})=\mathrm{N}^{2}$.
$\mathrm{T}_{\mathrm{A}}(\mathrm{N})=\mathrm{O}\left(\mathrm{T}_{\mathrm{B}}(\mathrm{N})\right)$: choose $\mathrm{c}=1$ and $\mathrm{n}_{0}=2$ or
choose $\mathrm{c}=2$ and $\mathrm{n}_{0}=1 \quad$ or
choose $\mathrm{c}=326$ and $\mathrm{n}_{0}=322$ etc.
but not: $\mathrm{c}=0.5$ and $\mathrm{n}_{0}=2$ or
$\mathrm{c}=1$ and $\mathrm{n}_{0}=1$

Big-Oh Example 4

$\rightarrow \mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$ if there are positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \leq \operatorname{cf}(\mathrm{N})$ for $\mathrm{N} \geq \mathrm{n}_{0}$.
\uparrow Example 4: $T(N)=\frac{N(N+1)}{2}$ Is $\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{N})$? $\mathrm{O}\left(\mathrm{N}^{2}\right) ? \mathrm{O}\left(\mathrm{N}^{3}\right)$?

Big-Oh Example 4

$\rightarrow \mathrm{T}(\mathrm{N})=\mathrm{O}\left(\mathrm{f}(\mathrm{N})\right.$) if there are positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \leq \operatorname{cf}(\mathrm{N})$ for $\mathrm{N} \geq \mathrm{n}_{0}$.
\uparrow Example 4: $T(N)=\frac{N(N+1)}{2}$
$\mathrm{T}(\mathrm{N})=\mathrm{O}\left(\mathrm{N}^{2}\right)$
$T(N)=\frac{N(N+1)}{2}=\frac{N^{2}}{2}+\frac{N}{2} \leq N^{2}+N \leq 2 N^{2}$ for $N \geq 0$
(so, choose $\mathrm{c}=2$ and $\mathrm{n}_{0}=1$)

Example of Application to Run Time Analysis

\uparrow Recall: Our dumb printing program segment:
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{N} ; \mathrm{i}++$)

$$
\text { for }(j=1 ; j<=i ; j++)
$$

<print "Hey, wassup?">
\uparrow Running time is proportional to number of times print statement is executed $=$

$$
\sum_{i=1}^{N} i=\frac{N(N+1)}{2}=O\left(N^{2}\right)
$$

- Runs in "Quadratic time"

Common functions we will encounter...

Name	Big-Oh
Constant	$\mathrm{O}(1)$
Log log	$\mathrm{O}(\log \log \mathrm{N})$
Logarithmic	$\mathrm{O}(\log \mathrm{N})$
Log squared	$\mathrm{O}\left((\log \mathrm{N})^{2}\right)$
Linear	$\mathrm{O}(\mathrm{N})$
N log N	$\mathrm{O}(\mathrm{N} \log \mathrm{N})$
Quadratic	$\mathrm{O}\left(\mathrm{N}^{2}\right)$
Cubic	$\mathrm{O}\left(\mathrm{N}^{3}\right)$
Exponential	$\mathrm{O}\left(2^{\mathrm{N}}\right)$

Next Lecture: Using Big-Oh for Algorithm Analysis

To do:
Finish reading Chapters 1 and 2
Start (and Finish!) Homework \#1

