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CSE 326 Lecture 2: Mathematical Background

Today, we will review:
Logs and exponents
Series
Recursion
Big-Oh notation for analysis of algorithms

Covered in Chapters 1 and 2 of the text
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Logs and exponents

We will be dealing mostly with binary numbers (base 2)

Definition: logX B = A means XA = B

Any base is equivalent to base 2 within a constant factor:

Why?
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Logs and exponents

We will be dealing mostly with binary numbers (base 2) 

Definition: logX B = A means XA = B

Any base is equivalent to base 2 within a constant factor:

Why?

Because: Let R = log2 B, S = log2 X, and T = logX B,

2R = B, 2S = X, and XT = B

Then, 2R = B = XT = 2ST i.e. R = ST and therefore, T = R/S.
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Properties of logs

We will assume logs to base 2 unless specified otherwise

log AB = ?

log A/B = ?

log AB = ?
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Properties of logs

We will assume logs to base 2 unless specified otherwise

log AB = log A + log B   (note: log AB ≠ log A•log B)

log A/B = log A – log B   (note: log A/B ≠ log A / log B)

log AB = B log A     (note: log AB ≠ (log A) B = log B A)
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More on logs

log log X < log X < X for all X > 1 

log log X = Y means

log X grows slower than X; called a “sub-linear”

function

log 1 = 0, log 2 = 1, log 1024 = 10

X
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Arithmetic Series

Note: S(1) = 1, S(2) = 3, S(3) = 6, S(4) = 10, …

Is there a pattern?
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Arithmetic Series

Is S(N) = N(N+1)/2 ?

Prove by induction (base case: N = 1, S(N) = 1(2)/2 = 1)

Assume true for N = k: S(k) = k(k+1)/2

Suppose N = k+1.

S(k+1) = 1 + 2 + …+ k + (k+1) = S(k) + (k+1)

= k(k+1)/2 + (k+1) = (k+1)(k/2 + 1) = 

(k+1)(k+2)/2.
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Arithmetic Series
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Why is this formula useful?

Yes, why 
indeed?
(yawn)
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A Sneak Preview of Algorithm Analysis

Consider the following program segment:
for (i = 1; i <= N; i++)
for (j = 1; j <= i; j++)
<print “Hey, wassup?”>  // pseudocode for Java/C++ print

How many times is the “print” statement executed? 
Or, How many wassup’s will you see?
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A Sneak Preview of Algorithm Analysis

The program segment being analyzed:

for (i = 1; i <= N; i++)
for (j = 1; j <= i; j++)

<print “Hey, wassup?”>
Inner loop executes “print” i times in the ith iteration

There are N iterations in the outer loop (i goes from 1 to N)

Total number of times “print” is executed = ∑
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A Sneak Preview of Algorithm Analysis

The program segment being analyzed:

for (i = 1; i <= N; i++)
for (j = 1; j <= i; j++)

<print “Hey, wassup?”>

Total number of times “print” is executed =

Running time of the program is proportional to 
N(N+1)/2 for all N.
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Congrats - You just analyzed 
your first program!
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Other Important Series (know them well!)

Sum of squares: 

Sum of exponents:

Harmonic series (k = -1):

loge N (or ln N) is the natural log of N

Geometric series: 
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Recursion

A function that calls itself is said to be recursive
E.g. Recursive procedure “sum” in the first lecture

Recursion may be a natural way to program certain 
functions that involve repetitive calculations (as 
compared to iteration by “for” or “while” loops)

Classic example: Fibonacci numbers Fn

1, 1, 2, 3, 5, 8, 13, 21, 34, …

First two are: F0 = F1 = 1
Rest are sum of preceding two
Fn = Fn-1 + Fn-2 (n > 1)

Leonardo Pisano 
Fibonacci (1170-1250)
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Recursive Procedure for Fibonacci Numbers

public static int fib(int i) {
if (i < 0) return 0;  //invalid input
if (i == 0 || i == 1) return 1;  //base cases
else return fib(i-1)+fib(i-2);
}

Easy to write: looks like the definition of Fn

But, can you spot a big problem?
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Recursive Calls of Fibonacci Procedure

Wastes precious time by re-computing fib(N-i) multiple 
times, for i = 2, 3, 4, etc.!

fib(N)

fib(N-1)

fib(N-2)

fib(N-3)
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Iterative Procedure for Fibonacci Numbers

public static int fib_iter(int i) {
int fib0 = 1, fib1 = 1, fibj = 1;
if (i < 0) return 0;  //invalid input
for (int j = 2; j <= i; j++) { //calculate all fib nos. up to i

fibj = fib0 + fib1;
fib0 = fib1;
fib1 = fibj;

}
return fibj;

}

More variables and more bookkeeping but avoids repetitive 
calculations and saves time. 

How much time is saved over the recursive procedure?
Answer in next class…
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Recursion Summary

Recursion may simplify programming, but beware of 
generating large numbers of calls

Function calls can be expensive in terms of time and space
There is a hidden space cost associated with the system’s stack

Be sure to get the base case(s) correct!

Each step must get you closer to the base case

You may use induction to prove your program is correct
See example in previous lecture
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Motivation for Big-Oh Notation

Suppose you are given two algorithms A and B for 
solving a problem

Here is the running time TA(N) and TB(N) of A and B as a 
function of input size N:

Which algorithm 

would you choose?

TA

TB
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Motivation for Big-Oh Notation (cont.)

For large N, the running time of A and B is:
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Now which 

algorithm would 

you choose?

TA(N) = 50N

TB(N) = N2
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Motivation for Big-Oh: Asymptotic Behavior

In general, what really matters is the “asymptotic” 
performance as N →∞, regardless of what happens for 
small input sizes N.

Performance for small input sizes may matter in practice, 
if you are sure that small N will be common

This is usually not the case for most applications

Given functions T1(N) and T2(N) that define the running 
times of two algorithms, we need a way to decide which 
one is better (i.e. asymptotically smaller)

Big-Oh notation
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Big-Oh Notation

T(N) = O(f(N)) if there are positive constants c and n0

such that T(N) ≤ cf(N) for N ≥ n0.

We say that T(N) is “big-oh” of f(N) (or, order of f(N))

Example 1: Suppose T(N) = 50N. Then, T(N) = O(N)
Why?
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Big-Oh Example 2

T(N) = O(f(N)) if there are positive constants c and n0 such 
that T(N) ≤ cf(N) for N ≥ n0.

We say that T(N) is “big-oh” of f(N) (or, order of f(N))

Example 1: Suppose T(N) = 50N. Then, T(N) = O(N)
Choose c = 50 and n0 = 1   (many other choices work too!)

Example 2: Suppose T(N) = 50N+11. Then, T(N) = O(N)
Why?
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Big-Oh Example 3

T(N) = O(f(N)) if there are positive constants c and n0

such that T(N) ≤ cf(N) for N ≥ n0.

Example 2: Suppose T(N) = 50N+11. Then, T(N) = O(N)
Why?
T(N) = 50N+11 ≤ 50N+11N = 61N for N ≥ 1. 
So, c = 61 and n0 = 1 works

Example 3: TA(N) = N+1, TB(N) = N2. 

Show that TA(N) = O(TB(N)): what works for c and n0?
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Big-Oh Example 3

T(N) = O(f(N)) if there are positive constants c and n0
such that T(N) ≤ cf(N) for N ≥ n0.

Example 3: TA(N) = N+1, TB(N) = N2. 

TA(N) = O(TB(N)): choose c = 1 and n0 = 2    or

choose c = 2 and n0 = 1     or

choose c = 326 and n0 = 322  etc.

but not: c = 0.5 and n0 = 2 or

c = 1 and n0 = 1
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Big-Oh Example 4

T(N) = O(f(N)) if there are positive constants c and n0

such that T(N) ≤ cf(N) for N ≥ n0.

Example 4:

Is T(N)  =  O(N)?  O(N2)?  O(N3)? 
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Big-Oh Example 4

T(N) = O(f(N)) if there are positive constants c and n0

such that T(N) ≤ cf(N) for N ≥ n0.

Example 4:

T(N)  =  O(N2)
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(so, choose c = 2 and n0 = 1)

(Note: T(N) is also O(N3)! Why?)
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Example of Application to Run Time Analysis

Recall: Our dumb printing program segment:

for (i = 1; i <= N; i++)
for (j = 1; j <= i; j++)

<print “Hey, wassup?”>
Running time is proportional to number of times print
statement is executed = 

Runs in “Quadratic time”
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Common functions we will encounter…

O(2N)Exponential

O(N3)Cubic

O(N2)Quadratic

O(N log N)N log N

O(N)Linear

O((log N)2)Log squared

O(log N)Logarithmic

O(log log N)Log log

O(1)Constant
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Next Lecture: Using Big-Oh for Algorithm Analysis

To do:

Finish reading Chapters 1 and 2

Start (and Finish!) Homework #1


