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Lecture 21: From Dijkstra to Prim

✦ What will we munch on today?
➭ Dijkstra’s Shortest Path Algorithm
➭ Depth First Search (DFS)
➭ Spanning Trees
➭Minimum Spanning Trees (MSTs)
➧ Prim’s Algorithm

✦ Covered in Chapter 9 in the textbook

Some slides based on: CSE 326 by S. Wolfman, 2000
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Recall: Single Source, Shortest Path Problem

✦ Given a graph G = (V, E) and a “source” vertex s in V, find 
the minimum cost paths from s to every vertex in V
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Pseudocode for Dijkstra’s Algorithm

1. Initialize the cost of each node to ∞

2. Initialize the cost of the source to 0

3. While there are unknown nodes left in the 
graph
1. Select the unknown node N with the 

lowest cost (greedy choice)
2. Mark N as known
3. For each node X adjacent to N

If (N’s cost + cost of (N, X)) < X’s cost
X’s cost = N’s cost + cost of (N, X)
Prev[X] = N //store preceding node
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paths to be
reconstructed)
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Dijkstra’s Algorithm in Action
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Dijkstra’s Algorithm: The Result
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Analysis of Dijkstra’s Algorithm

✦ Main loop:
While there are unknown nodes left in the graph
1. Select the unknown node N with the lowest cost 
2. Mark N as known
3.  For each node X adjacent to N

If (N’s cost + cost of (N, X)) < X’s cost
X’s cost = N’s cost + cost of (N, X)

? times
O(?)

O(?) in total
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Analysis of Dijkstra’s Algorithm

✦ Main loop:
While there are unknown nodes left in the graph
1. Select the unknown node N with the lowest cost 
2. Mark N as known
3.  For each node X adjacent to N

If (N’s cost + cost of (N, X)) < X’s cost
X’s cost = N’s cost + cost of (N, X)

|V| times
O(|V|)

O(|E|) in total

Total time ≤ |V| (O(|V|)) +O(|E|) = O(|V|2 + |E|)
Dense graph: |E| = Θ(|V|2) → Total time = O(|V|2) = O(|E|)  √
Sparse graph: |E| = Θ(|V|) → Total time = O(|V|2) = O(|E|2)  χ

Quadratic! Can we do better?
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Yo, data structurers, can we do better?

Select the unknown node N with the lowest cost

X’s cost = N’s cost + cost of (N, X)

|V| times:

O(|E|) times:

What data structure can we use to 
speed up the following operations? 

Mark as known

What ADT operations should we use?
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Speeding up Dijkstra

Select the unknown node N with the lowest cost

deleteMin

X’s cost = N’s cost + cost of (N, X)

decreaseKey

|V| times:

|E| times:

Use a priority queue to store vertices with key = cost 

Total run time for G = (V, E) is = ?
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Mark as known
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Speeding up Dijkstra

Select the unknown node N with the lowest cost

deleteMin

X’s cost = N’s cost + cost of (N, X)

decreaseKey

|V| times:

|E| times:

Use a priority queue to store vertices with key = cost 

Total run time = O(|V| log |V| + |E| log |V|)
= O(|E| log |V|)
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Mark as known

(Faster than O(|V|2); good for sparse graphs)
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Does Dijkstra’s Algorithm Always Work?

✦ Dijkstra’s algorithm is an example of a greedy algorithm

✦ Greedy algorithms always make choices that currently seem 
the best
➭ Short-sighted – no consideration of long-term or global issues
➭ Locally optimal does not always mean globally optimal

✦ In Dijkstra’s case – choose the least cost node, but what if 
there is another path through other vertices that is cheaper?

✦ Can prove: Never happens if all edge weights are positive
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THE KNOWN
CLOUD

G Next shortest path from 
inside the known cloud

P

The “Cloudy” Proof of Dijkstra’s Correctness

If the path to G is the next shortest path from source S, 
then the path from S to P cannot be shorter. 

Therefore, any path through P to G cannot be shorter!

Source S

Least cost node

So path from S to G is shortest!
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Inside the Cloud (Proof)

Claim: Everything inside the known cloud has the correct 
shortest path

Proof: By induction on the number of nodes in the cloud:
➭ Base case: Initial cloud is just the source with shortest 

path 0
➭ Inductive hypothesis: Assume cloud of k-1 nodes all 

have shortest paths from source
➭ Inductive step: Choose the next least cost node G →

from previous slide, has to be the shortest path to G. 
Add kth node G to the cloud – all k have shortest paths.
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Inside the Cloud (Proof)

Claim: Everything inside the known cloud has the correct 
shortest path

Proof: By induction on the number of nodes in the cloud:
➭ Base case: Initial cloud is just the source with shortest path 0
➭ Inductive hypothesis: Assume cloud of k-1 nodes all have 

shortest paths from source
➭ Inductive step: Choose the next least cost node G → from 

previous slide, has to be the shortest path to G. Add kth node 
G to the cloud – all k have shortest paths.

But waitaminute!! What about negative weights??

Kevin
Bacon

Gotcha!!
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Negative Weights: Dijkstra’s Achilles Heel
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Dijkstra path (greedy): C→D  (cost = -5)
Least cost path: C→E→D  (cost = -8)

I got it! What’bout addin’ a 
positive constant to all edges??

Dijkstra gives incorrect answer!!
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Negative Weights: Dijkstra’s Achilles Heel
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Dijkstra path (greedy): C→D  (cost = -5)
Least cost path: C→E→D  (cost = -8)

Solution: Combine Dijsktra with BFS (use a queue): O(|E||V|) time
(see Chap 9 for details) (not too good!)

Simply adding a constant to all edges won’t work! (Try adding +10)
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Negative Cycles: Dijkstra’s Achilles Foot
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Negative cycles: What’s the least cost path 
from A to B? (or to C or D, for that matter)

Least cost path undefined!
Can keep going around the loop for ever-shorter paths
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Weighted graphs are messy...
Let’s get back to unweighted graphs

✦ We used Breadth First Search for finding shortest paths in an 
unweighted graph
➭ Use a queue to explore neighbors of source vertex, neighbors of 

each neighbor, etc. (1 edge away, two edges away, etc.)

✦ Its counterpart: Depth First Search
➭ A second way to explore all nodes in a graph

✦ DFS searches down one path as deep as possible
➭ When no new nodes available, it backtracks
➭ When backtracking, we explore side-paths that weren’t taken

✦ DFS allows an easy recursive implementation
➭ So, DFS uses a stack while BFS uses a queue
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DFS Pseudocode

✦ Pseudocode for DFS: Easy!
DFS(v)
If v is unvisited
mark v as visited
print v (or process v)
for each edge (v,w)
DFS(w)

✦ Works for directed or 
undirected graphs
➭Works for graphs with 

cycles too

✦ Running time = 
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O(|V| + |E|)
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What about DFS on this graph?

✦ What happens when you do DFS(“142”)?

321143
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341370

378

401

421Go as deep as possible,
Then backtrack…
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We get a “spanning” tree…
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DFS and BFS may give different trees…

DFS(C)
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BFS(C)

…but both are “spanning” trees
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✦ A Spanning tree = a subset of edges from a connected 
graph that:
➭ touches all vertices in the graph (spans the graph)
➭ forms a tree (is connected and contains no cycles)

✦ Minimum spanning tree: the spanning tree with the least 
total edge cost

Spanning Tree Definition
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Weighted graph Three spanning trees
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Minimum Spanning Tree (MST) Problem

We are given a 
weighted, undirected 
graph G = (V, E), with 
weight function 
w: E → R mapping 
edges to real valued 
weights

Problem: Find the 
minimum cost spanning 
tree
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Why minimum spanning trees?

✦ Lots of applications

✦ Minimize length of gas pipelines between cities

✦ Find cheapest way to wire a house (with minimum cable)

✦ Find a way to connect various routers on a network that 
minimizes total delay

✦ Finding them could be a cool rainy day activity

✦ Etc…
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Prim’s Algorithm for Finding the MST

1. Starting from an empty 
tree, T, pick a vertex, v0, at 
random and initialize:      
V’ = {v0} and E’ = {}
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1. Starting from an empty 
tree, T, pick a vertex, v0, at 
random and initialize:      
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from 
v to a vertex in V’ is the 
least among all such edges
(greedy again!)

Prim’s Algorithm for Finding the MST
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1. Starting from an empty 
tree, T, pick a vertex, v0, at 
random and initialize:      
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from 
v to a vertex in V’ is the 
least among all such edges

3. Add v to V’ and the edge to 
E’ if no cycle is created

Prim’s Algorithm for Finding the MST
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1. Starting from an empty 
tree, T, pick a vertex, v0, at 
random and initialize:      
V’ = {v0} and E’ = {}

2. Choose vertex v not in V’
such that edge weight from 
v to a vertex in V’ is the 
least among all such edges

3. Add v to V’ and the edge to 
E’ if no cycle is created

4. Repeat until all vertices 
have been added

Prim’s Algorithm for Finding the MST
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1. Starting from an empty 
tree, T, pick a vertex, v0, at 
random and initialize:      
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from 
v to a vertex in V’ is the 
least among all such edges

3. Add v to V’ and the edge to 
E’ if no cycle is created

4. Repeat until all vertices 
have been added

Prim’s Algorithm for Finding the MST
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1. Starting from an empty 
tree, T, pick a vertex, v0, at 
random and initialize:      
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from 
v to a vertex in V’ is the 
least among all such edges

3. Add v to V’ and the edge to 
E’ if no cycle is created

4. Repeat until all vertices 
have been added

Prim’s Algorithm for Finding the MST
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1. Starting from an empty 
tree, T, pick a vertex, v0, at 
random and initialize:      
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from 
v to a vertex in V’ is the 
least among all such edges

3. Add v to V’ and the edge to 
E’ if no cycle is created

4. Repeat until all vertices 
have been added

Prim’s Algorithm for Finding the MST
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Done!
Total cost = 1 + 3 + 4 + 1 + 1

= 10
(verify that this is indeed the MST)

Prim’s Algorithm for Finding the MST

How fast does Prim run?
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Hint: Almost identical to
Dijkstra’s is Prim’s algorithm…
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Next Class (by Vass): 

Analysis of Prim’s Algorithm

Kruskal takes a bow – faster MST

To Do:

Homework Assignment #4

Continue reading Chapter 9


