
1R. Rao, CSE 326

Lecture 21: From Dijkstra to Prim

✦ What will we munch on today?
➭ Dijkstra’s Shortest Path Algorithm
➭ Depth First Search (DFS)
➭ Spanning Trees
➭Minimum Spanning Trees (MSTs)
➧ Prim’s Algorithm

✦ Covered in Chapter 9 in the textbook

Some slides based on: CSE 326 by S. Wolfman, 2000

2R. Rao, CSE 326

Recall: Single Source, Shortest Path Problem

✦ Given a graph G = (V, E) and a “source” vertex s in V, find
the minimum cost paths from s to every vertex in V

A

C

B

D

E

2

2

1
1

9
3

8

3

Source

3R. Rao, CSE 326

Pseudocode for Dijkstra’s Algorithm

1. Initialize the cost of each node to ∞

2. Initialize the cost of the source to 0

3. While there are unknown nodes left in the
graph
1. Select the unknown node N with the

lowest cost (greedy choice)
2. Mark N as known
3. For each node X adjacent to N

If (N’s cost + cost of (N, X)) < X’s cost
X’s cost = N’s cost + cost of (N, X)
Prev[X] = N //store preceding node

A

C

B

D

E

2

2

1
1

9
3

8

3

(Prev allows
paths to be
reconstructed)

4R. Rao, CSE 326

Dijkstra’s Algorithm in Action

A

C

B

D E

2

2

11

9
3

8

3

Initial Final

∞NoE

∞NoD

0YesC

∞NoB

∞NoA

Prevcostknownvertex

E

D

C

B

A

Prevcostknownvertex

5R. Rao, CSE 326

Dijkstra’s Algorithm: The Result

A

C

B

D E

2

2

11

9
3

8

3

Initial Final

-∞NoE

-∞NoD

-0YesC

-∞NoB

-∞NoA

Prevcostknownvertex

C2YesE

E5YesD

-0YesC

A10YesB

D8YesA

Prevcostknownvertex

6R. Rao, CSE 326

Analysis of Dijkstra’s Algorithm

✦ Main loop:
While there are unknown nodes left in the graph
1. Select the unknown node N with the lowest cost
2. Mark N as known
3. For each node X adjacent to N

If (N’s cost + cost of (N, X)) < X’s cost
X’s cost = N’s cost + cost of (N, X)

? times
O(?)

O(?) in total

7R. Rao, CSE 326

Analysis of Dijkstra’s Algorithm

✦ Main loop:
While there are unknown nodes left in the graph
1. Select the unknown node N with the lowest cost
2. Mark N as known
3. For each node X adjacent to N

If (N’s cost + cost of (N, X)) < X’s cost
X’s cost = N’s cost + cost of (N, X)

|V| times
O(|V|)

O(|E|) in total

Total time ≤ |V| (O(|V|)) +O(|E|) = O(|V|2 + |E|)
Dense graph: |E| = Θ(|V|2) → Total time = O(|V|2) = O(|E|) √
Sparse graph: |E| = Θ(|V|) → Total time = O(|V|2) = O(|E|2) χ

Quadratic! Can we do better?

8R. Rao, CSE 326

Yo, data structurers, can we do better?

Select the unknown node N with the lowest cost

X’s cost = N’s cost + cost of (N, X)

|V| times:

O(|E|) times:

What data structure can we use to
speed up the following operations?

Mark as known

What ADT operations should we use?

9R. Rao, CSE 326

Speeding up Dijkstra

Select the unknown node N with the lowest cost

deleteMin

X’s cost = N’s cost + cost of (N, X)

decreaseKey

|V| times:

|E| times:

Use a priority queue to store vertices with key = cost

Total run time for G = (V, E) is = ?

2

4 6

7 5

Mark as known

10R. Rao, CSE 326

Speeding up Dijkstra

Select the unknown node N with the lowest cost

deleteMin

X’s cost = N’s cost + cost of (N, X)

decreaseKey

|V| times:

|E| times:

Use a priority queue to store vertices with key = cost

Total run time = O(|V| log |V| + |E| log |V|)
= O(|E| log |V|)

2

4 6

7 5

Mark as known

(Faster than O(|V|2); good for sparse graphs)

11R. Rao, CSE 326

Does Dijkstra’s Algorithm Always Work?

✦ Dijkstra’s algorithm is an example of a greedy algorithm

✦ Greedy algorithms always make choices that currently seem
the best
➭ Short-sighted – no consideration of long-term or global issues
➭ Locally optimal does not always mean globally optimal

✦ In Dijkstra’s case – choose the least cost node, but what if
there is another path through other vertices that is cheaper?

✦ Can prove: Never happens if all edge weights are positive

12R. Rao, CSE 326

THE KNOWN
CLOUD

G Next shortest path from
inside the known cloud

P

The “Cloudy” Proof of Dijkstra’s Correctness

If the path to G is the next shortest path from source S,
then the path from S to P cannot be shorter.

Therefore, any path through P to G cannot be shorter!

Source S

Least cost node

So path from S to G is shortest!

13R. Rao, CSE 326

Inside the Cloud (Proof)

Claim: Everything inside the known cloud has the correct
shortest path

Proof: By induction on the number of nodes in the cloud:
➭ Base case: Initial cloud is just the source with shortest

path 0
➭ Inductive hypothesis: Assume cloud of k-1 nodes all

have shortest paths from source
➭ Inductive step: Choose the next least cost node G →

from previous slide, has to be the shortest path to G.
Add kth node G to the cloud – all k have shortest paths.

14R. Rao, CSE 326

Inside the Cloud (Proof)

Claim: Everything inside the known cloud has the correct
shortest path

Proof: By induction on the number of nodes in the cloud:
➭ Base case: Initial cloud is just the source with shortest path 0
➭ Inductive hypothesis: Assume cloud of k-1 nodes all have

shortest paths from source
➭ Inductive step: Choose the next least cost node G → from

previous slide, has to be the shortest path to G. Add kth node
G to the cloud – all k have shortest paths.

But waitaminute!! What about negative weights??

Kevin
Bacon

Gotcha!!

15R. Rao, CSE 326

Negative Weights: Dijkstra’s Achilles Heel

A

C

B

D E

2

2

11

9
3

-5

-10

Dijkstra path (greedy): C→D (cost = -5)
Least cost path: C→E→D (cost = -8)

I got it! What’bout addin’ a
positive constant to all edges??

Dijkstra gives incorrect answer!!

16R. Rao, CSE 326

Negative Weights: Dijkstra’s Achilles Heel

A

C

B

D E

2

2

11

9
3

-5

-10

Dijkstra path (greedy): C→D (cost = -5)
Least cost path: C→E→D (cost = -8)

Solution: Combine Dijsktra with BFS (use a queue): O(|E||V|) time
(see Chap 9 for details) (not too good!)

Simply adding a constant to all edges won’t work! (Try adding +10)

17R. Rao, CSE 326

Negative Cycles: Dijkstra’s Achilles Foot

A B

C D

2

1-5

2

Negative cycles: What’s the least cost path
from A to B? (or to C or D, for that matter)

Least cost path undefined!
Can keep going around the loop for ever-shorter paths

18R. Rao, CSE 326

Weighted graphs are messy...
Let’s get back to unweighted graphs

✦ We used Breadth First Search for finding shortest paths in an
unweighted graph
➭ Use a queue to explore neighbors of source vertex, neighbors of

each neighbor, etc. (1 edge away, two edges away, etc.)

✦ Its counterpart: Depth First Search
➭ A second way to explore all nodes in a graph

✦ DFS searches down one path as deep as possible
➭ When no new nodes available, it backtracks
➭ When backtracking, we explore side-paths that weren’t taken

✦ DFS allows an easy recursive implementation
➭ So, DFS uses a stack while BFS uses a queue

19R. Rao, CSE 326

DFS Pseudocode

✦ Pseudocode for DFS: Easy!
DFS(v)
If v is unvisited
mark v as visited
print v (or process v)
for each edge (v,w)
DFS(w)

✦ Works for directed or
undirected graphs
➭Works for graphs with

cycles too

✦ Running time =

A

B
C

D E

A

C

B

D
E

DFS(C)

DFS(C)

O(|V| + |E|)

20R. Rao, CSE 326

What about DFS on this graph?

✦ What happens when you do DFS(“142”)?

321143

142

322

326

341370

378

401

421Go as deep as possible,
Then backtrack…

21R. Rao, CSE 326

We get a “spanning” tree…

321143

142

322

326

341370

378

401

421

22R. Rao, CSE 326

DFS and BFS may give different trees…

DFS(C)

A

B
C

D E

A

B
C

D E

A

B
C

D E

BFS(C)

…but both are “spanning” trees

23R. Rao, CSE 326

✦ A Spanning tree = a subset of edges from a connected
graph that:
➭ touches all vertices in the graph (spans the graph)
➭ forms a tree (is connected and contains no cycles)

✦ Minimum spanning tree: the spanning tree with the least
total edge cost

Spanning Tree Definition

4 7

1 5

9

2

Weighted graph Three spanning trees

24R. Rao, CSE 326

Minimum Spanning Tree (MST) Problem

We are given a
weighted, undirected
graph G = (V, E), with
weight function
w: E → R mapping
edges to real valued
weights

Problem: Find the
minimum cost spanning
tree

1

2 3 4

6 5

10
1

5

5

3

2

6
1

1

4

25R. Rao, CSE 326

Why minimum spanning trees?

✦ Lots of applications

✦ Minimize length of gas pipelines between cities

✦ Find cheapest way to wire a house (with minimum cable)

✦ Find a way to connect various routers on a network that
minimizes total delay

✦ Finding them could be a cool rainy day activity

✦ Etc…

26R. Rao, CSE 326

1

2 3 4

6 5

10
1

5

5

3

2

6
1

1

4

v0

Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

27R. Rao, CSE 326

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is the
least among all such edges
(greedy again!)

Prim’s Algorithm for Finding the MST

1

2 3 4

6 5

10
1

5

5

3

2

6
1

1

4

v0

v

28R. Rao, CSE 326

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is the
least among all such edges

3. Add v to V’ and the edge to
E’ if no cycle is created

Prim’s Algorithm for Finding the MST

1

2 3 4

6 5

10
1

5

5

3

2

6
1

1

4

v0

v

29R. Rao, CSE 326

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose vertex v not in V’
such that edge weight from
v to a vertex in V’ is the
least among all such edges

3. Add v to V’ and the edge to
E’ if no cycle is created

4. Repeat until all vertices
have been added

Prim’s Algorithm for Finding the MST

1

2 3 4

6 5

10
1

5

5

3

2

6
1

1

4

v0

v

30R. Rao, CSE 326

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is the
least among all such edges

3. Add v to V’ and the edge to
E’ if no cycle is created

4. Repeat until all vertices
have been added

Prim’s Algorithm for Finding the MST

1

2 3 4

6 5

10
1

5

5

3

2

6
1

1

4

v0

31R. Rao, CSE 326

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is the
least among all such edges

3. Add v to V’ and the edge to
E’ if no cycle is created

4. Repeat until all vertices
have been added

Prim’s Algorithm for Finding the MST

1

2 3 4

6 5

10
1

5

5

3

2

6
1

1

4

v0

32R. Rao, CSE 326

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is the
least among all such edges

3. Add v to V’ and the edge to
E’ if no cycle is created

4. Repeat until all vertices
have been added

Prim’s Algorithm for Finding the MST

1

2 3 4

6 5

10
1

5

5

3

2

6
1

1

4

v0

33R. Rao, CSE 326

Done!
Total cost = 1 + 3 + 4 + 1 + 1

= 10
(verify that this is indeed the MST)

Prim’s Algorithm for Finding the MST

How fast does Prim run?

1

2 3 4

6 5

1

3

1
1

4

Hint: Almost identical to
Dijkstra’s is Prim’s algorithm…

34R. Rao, CSE 326

Next Class (by Vass):

Analysis of Prim’s Algorithm

Kruskal takes a bow – faster MST

To Do:

Homework Assignment #4

Continue reading Chapter 9

