Lecture 21: From Dijkstra to Prim

\downarrow What will we munch on today?
\Rightarrow Dijkstra's Shortest Path Algorithm
\Rightarrow Depth First Search (DFS)
\Rightarrow Spanning Trees
\Rightarrow Minimum Spanning Trees (MSTs)

- Prim's Algorithm
- Covered in Chapter 9 in the textbook

Recall: Single Source, Shortest Path Problem

\uparrow Given a graph $\mathrm{G}=(V, E)$ and a "source" vertex s in V, find the minimum cost paths from s to every vertex in V

Pseudocode for Dijkstra's Algorithm

1. Initialize the cost of each node to ∞
2. Initialize the cost of the source to 0
3. While there are unknown nodes left in the graph
4. Select the unknown node N with the lowest cost (greedy choice)
5. Mark N as known
6. For each node X adjacent to N

If $(N$'s cost $+\operatorname{cost}$ of $(N, X))<X$'s cost
X 's cost $=N$'s cost $+\operatorname{cost}$ of (N, X) $\operatorname{Prev}[X]=N / /$ store preceding node

(Prev allows paths to be reconstructed)

Dijkstra's Algorithm in Action

vertex	known	cost	Prev
A	No	∞	
B	No	∞	
C	Yes	0	
D	No	∞	
E	No	∞	

Initial \rightarrow| vertex | known | cost | Prev |
| :---: | :---: | :---: | :---: |
| A | | | |
| B | | | |
| C | | | |
| D | | | |
| E | | | |
| R. Rao, CSE 326 | | | |

Dijkstra's Algorithm: The Result

vertex	known	cost	Prev									
A	No	∞	-									
B	No	∞	-									
C	Yes	0	-									
D	No	∞	-									
E	No	∞	-									
Initial								\rightarrow	vertex	known	cost	Prev
:---:	:---:	:---:	:---:	:---:								
A	Yes	8	D									
B	Yes	10	A									
C	Yes	0	-									
D	Yes	5	E									
E	Yes	2	C									

R. Rao, CSE 326

Analysis of Dijkstra's Algorithm

- Main loop:

While there are unknown nodes left in the graph \longleftarrow ? times

1. Select the unknown node N with the lowest cost $\longleftarrow \mathrm{O}($? $)$
2. Mark N as known
3. For each node X adjacent to N

$$
\left.\begin{array}{c}
\text { If }(N \text { 's cost + cost of }(N, X))<\text { X's cost } \\
X \text { 's cost }=N \text { 's cost }+ \text { cost of }(N, X)
\end{array}\right\} \quad \mathrm{O}(?) \text { in total }
$$

Analysis of Dijkstra's Algorithm

- Main loop:

While there are unknown nodes left in the graph $\longleftarrow|V|$ times

1. Select the unknown node N with the lowest cost $\longleftarrow \mathrm{O}(|V|)$
2. Mark N as known
3. For each node X adjacent to N
$\left.\begin{array}{c}\text { If }(N \text { 's cost }+\operatorname{cost} \text { of }(N, X))<\mathrm{X} \text { 's cost } \\ X \text { 's cost }=N \text { 's cost }+\operatorname{cost} \text { of }(N, X)\end{array}\right\} \quad \mathrm{O}(|E|)$ in total
Total time $\leq|V|(\mathrm{O}(|V|))+\mathrm{O}(|E|)=\mathrm{O}\left(|V|^{2}+|E|\right)$
Dense graph: $|E|=\Theta\left(|V|^{2}\right) \rightarrow$ Total time $=\mathrm{O}\left(|V|^{2}\right)=\mathrm{O}(|E|) \sqrt{ }$
Sparse graph: $|E|=\Theta(|V|) \rightarrow$ Total time $=\mathrm{O}\left(|V|^{2}\right)=\mathrm{O}\left(|E|^{2}\right) \chi$ Quadratic! Can we do better?

Yo, data structurers, can we do better?

What data structure can we use to speed up the following operations?
$|V|$ times:
Select the unknown node N with the lowest cost
Mark as known
$\mathrm{O}(|E|)$ times:
$X ' s$ cost $=N$'s cost + cost of (N, X)

What ADT operations should we use?

Speeding up Dijkstra

Use a priority queue to store vertices with key $=$ cost
$|V|$ times:
Select the unknown node N with the lowest cost
Mark as known
$|E|$ times:
deleteMin
X 's cost $=N$'s cost $+\operatorname{cost}$ of (N, X)
\longrightarrow decreaseKey

Total run time for $G=(V, E)$ is $=$?
R. Rao, CSE 326

Speeding up Dijkstra

Use a priority queue to store vertices with key $=$ cost
$|V|$ times:
Select the unknown node N with the lowest cost
Mark as known
$|E|$ times:
deleteMin
X 's cost $=N$'s cost $+\operatorname{cost}$ of (N, X)

Total run time $=\mathbf{O}(|V| \log |V|+|E| \log |V|)$
$=\mathbf{O}(|E| \log |V|)$
R. Rao, CSE 326
(Faster than $\mathrm{O}\left(|V|^{2}\right)$; good for sparse graphs)

Does Dijkstra's Algorithm Always Work?

- Dijkstra's algorithm is an example of a greedy algorithm
\uparrow Greedy algorithms always make choices that currently seem the best
\Rightarrow Short-sighted - no consideration of long-term or global issues
\Rightarrow Locally optimal does not always mean globally optimal
- In Dijkstra's case - choose the least cost node, but what if there is another path through other vertices that is cheaper?
- Can prove: Never happens if all edge weights are positive

The "Cloudy" Proof of Dijkstra's Correctness

If the path to G is the next shortest path from source S , then the path from S to P cannot be shorter.
Therefore, any path through P to G cannot be shorter!

Inside the Cloud (Proof)

Claim: Everything inside the known cloud has the correct shortest path

Proof: By induction on the number of nodes in the cloud:
\Rightarrow Base case: Initial cloud is just the source with shortest path 0
\Rightarrow Inductive hypothesis: Assume cloud of k-1 nodes all have shortest paths from source
\Rightarrow Inductive step: Choose the next least cost node G \rightarrow from previous slide, has to be the shortest path to G . Add $\mathrm{k}^{\text {th }}$ node G to the cloud - all k have shortest paths.

Inside the Cloud (Proof)

Claim: Everything inside the known cloud has the correct shortest path

Proof: By induction on the number of nodes in the cloud:
\Rightarrow Base case: Initial cloud is just the source with shortest path 0
\Rightarrow Inductive hypothesis: Assume cloud of k -1 nodes all have shortest paths from source
\Rightarrow Inductive step: Choose the next least cost node G \rightarrow from previous slide, has to be the shortest path to G. Add $\mathrm{k}^{\text {th }}$ node G to the cloud - all k have shortest paths.

But waitaminute!! What about negative weights??

Negative Weights: Dijkstra's Achilles Heel

Dijkstra path (greedy): $\mathrm{C} \rightarrow \mathrm{D}($ cost $=-5)$ Least cost path: $\mathrm{C} \rightarrow \mathrm{E} \rightarrow \mathrm{D}($ cost $=-8)$ Dijkstra gives incorrect answer!!

Negative Weights: Dijkstra's Achilles Heel

Dijkstra path (greedy): $\mathrm{C} \rightarrow \mathrm{D}$ (cost $=-5$) Least cost path: $\mathrm{C} \rightarrow \mathrm{E} \rightarrow \mathrm{D}($ cost $=-8)$

Simply adding a constant to all edges won't work! (Try adding +10)
Solution: Combine Dijsktra with BFS (use a queue): $\mathrm{O}(|\mathrm{E}| \mathrm{V} \mid)$ time (see Chap 9 for details)
R. Rao, CSE 326
(not too good!)

Negative Cycles: Dijkstra's Achilles Foot

Negative cycles: What's the least cost path from A to B ? (or to C or D , for that matter)

Least cost path undefined!
Can keep going around the loop for ever-shorter paths

Weighted graphs are messy...

Let's get back to unweighted graphs

- We used Breadth First Search for finding shortest paths in an unweighted graph
\Rightarrow Use a queue to explore neighbors of source vertex, neighbors of each neighbor, etc. (1 edge away, two edges away, etc.)
\downarrow Its counterpart: Depth First Search
\Rightarrow A second way to explore all nodes in a graph
\uparrow DFS searches down one path as deep as possible
\Rightarrow When no new nodes available, it backtracks
\Rightarrow When backtracking, we explore side-paths that weren't taken
\uparrow DFS allows an easy recursive implementation
\Rightarrow So, DFS uses a stack while BFS uses a queue

DFS Pseudocode

\uparrow Pseudocode for DFS: Easy!
DFS (v)
If v is unvisited
mark v as visited
print v (or process v)
for each edge (v,w)
DFS (w)

- Works for directed or undirected graphs
\Rightarrow Works for graphs with cycles too
\uparrow Running time $=\mathbf{O}(|\boldsymbol{V}|+|E|)$

What about DFS on this graph?

\uparrow What happens when you do DFS("142")?

Go as deep as possible, Then backtrack...

We get a "spanning" tree...

DFS and BFS may give different trees...

Spanning Tree Definition

A Spanning tree $=$ a subset of edges from a connected graph that:
\Rightarrow touches all vertices in the graph (spans the graph)
\Leftrightarrow forms a tree (is connected and contains no cycles)

Weighted graph

Three spanning trees

- Minimum spanning tree: the spanning tree with the least total edge cost

Minimum Spanning Tree (MST) Problem

We are given a
weighted, undirected graph $G=(V, E)$, with weight function $w: E \rightarrow \mathbf{R}$ mapping edges to real valued weights

Problem: Find the minimum cost spanning tree

Why minimum spanning trees?

\rightarrow Lots of applications

- Minimize length of gas pipelines between cities
- Find cheapest way to wire a house (with minimum cable)
- Find a way to connect various routers on a network that minimizes total delay
\uparrow Finding them could be a cool rainy day activity
\uparrow Etc...

Prim's Algorithm for Finding the MST

1. Starting from an empty tree, T, pick a vertex, $v 0$, at random and initialize: $V^{\prime}=\{v 0\}$ and $E^{\prime}=\{ \}$

Prim's Algorithm for Finding the MST

1. Starting from an empty tree, T, pick a vertex, $v 0$, at random and initialize: $V^{\prime}=\{v 0\}$ and $E^{\prime}=\{ \}$
2. Choose a vertex v not in V^{\prime} such that edge weight from v to a vertex in V^{\prime} is the least among all such edges (greedy again!)

Prim's Algorithm for Finding the MST

1. Starting from an empty tree, T, pick a vertex, $v 0$, at random and initialize: $V^{\prime}=\{v 0\}$ and $E^{\prime}=\{ \}$
2. Choose a vertex v not in V^{\prime} such that edge weight from v to a vertex in V^{\prime} is the least among all such edges
3. Add v to V^{\prime} and the edge to E^{\prime} if no cycle is created

Prim's Algorithm for Finding the MST

1. Starting from an empty tree, T, pick a vertex, $v 0$, at random and initialize: $V^{\prime}=\{v 0\}$ and $E^{\prime}=\{ \}$
2. Choose vertex v not in V^{\prime} such that edge weight from v to a vertex in V^{\prime} is the least among all such edges
3. Add v to V^{\prime} and the edge to E^{\prime} if no cycle is created
4. Repeat until all vertices have been added

Prim's Algorithm for Finding the MST

1. Starting from an empty tree, T, pick a vertex, $v 0$, at random and initialize: $V^{\prime}=\{v 0\}$ and $E^{\prime}=\{ \}$
2. Choose a vertex v not in V^{\prime} such that edge weight from v to a vertex in V ' is the least among all such edges
3. Add v to V^{\prime} and the edge to E^{\prime} if no cycle is created
4. Repeat until all vertices have been added

Prim's Algorithm for Finding the MST

1. Starting from an empty tree, T, pick a vertex, $v 0$, at random and initialize: $V^{\prime}=\{v 0\}$ and $E^{\prime}=\{ \}$
2. Choose a vertex v not in V^{\prime} such that edge weight from v to a vertex in V ' is the least among all such edges
3. Add v to V^{\prime} and the edge to E^{\prime} if no cycle is created
4. Repeat until all vertices have been added

31

Prim's Algorithm for Finding the MST

1. Starting from an empty tree, T, pick a vertex, $v 0$, at random and initialize: $V^{\prime}=\{v 0\}$ and $E^{\prime}=\{ \}$
2. Choose a vertex v not in V^{\prime} such that edge weight from v to a vertex in V^{\prime} is the least among all such edges
3. Add v to V^{\prime} and the edge to 1 E^{\prime} if no cycle is created
4. Repeat until all vertices have been added

Prim's Algorithm for Finding the MST

Done!
Total cost $=1+3+4+1+1$

$$
=10
$$

(verify that this is indeed the MST)

How fast does Prim run?
Hint: Almost identical to
Dijkstra's is Prim's algorithm...

Next Class (by Vass):
Analysis of Prim's Algorithm
Kruskal takes a bow - faster MST

To Do:
Homework Assignment \#4
Continue reading Chapter 9

