CSE 326 Lecture 3: Analysis of Algorithms

- Today, we will review:
\Rightarrow Big-Oh, Litte-on, Omega (Ω), and Theta (Θ) :
(Fraternities of functions...)
\Rightarrow Examples of time and space efficiency analysis
\star Covered in Chapter 2 of the text

Recall from Last Time: Big-Oh Notation

\uparrow The graph shows the running times of algorithms A and B:

$$
\begin{gathered}
\mathbf{T}_{\mathbf{A}}(\mathbf{N})=\mathbf{O}\left(\mathbf{T}_{\mathbf{B}}(\mathbf{N})\right) \\
\mathrm{T}_{\mathrm{A}}(\mathrm{~N}) \text { is } \\
\text { "Big-Oh" of } \\
\mathrm{T}_{\mathrm{B}}(\mathrm{~N}) \\
\text { because } 50 \mathrm{~N} \leq \mathrm{N}^{2} \\
\text { for } \mathrm{N} \geq 50 \text {. } \\
\text { Actually, for } \mathrm{N} \geq 51 \text {, } \\
50 \mathrm{~N}<\mathrm{N}^{2}
\end{gathered}
$$

Big-Oh and Omega

- $\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$ if there are positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \leq \mathrm{cf}(\mathrm{N})$ for $\mathrm{N} \geq \mathrm{n}_{0}$.
\leftarrow E.g. $100 \log \mathrm{~N}, 53, \mathrm{~N}^{0.99}, 0.0001 \mathrm{~N}, 2^{100} \mathrm{~N}+\log \mathrm{N}$ are all $=\mathrm{O}(\mathrm{N})$
\leftrightarrow What if $T(N) \geq \operatorname{cf}(N)$ for $N \geq n_{0}$?

Big-Oh and Omega

$\uparrow T(N)=O(f(N))$ if there are positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \leq \operatorname{cf}(\mathrm{N})$ for $\mathrm{N} \geq \mathrm{n}_{0}$.
\leftarrow E.g. $100 \log \mathrm{~N}, 53, \mathrm{~N}^{0.99}, 0.0001 \mathrm{~N}, 2^{100} \mathrm{~N}+\log \mathrm{N}$ are all $=\mathrm{O}(\mathrm{N})$
$-\mathrm{T}(\mathrm{N})=\Omega(\mathrm{f}(\mathrm{N}))$ if there are positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \geq \mathrm{cf}(\mathrm{N})$ for $\mathrm{N} \geq \mathrm{n}_{0}$.
\leftrightarrow E.g. $2^{\mathrm{N}}, \mathrm{N}^{\log \mathrm{N}}, \mathrm{N}^{1.002}, 0.0001 \mathrm{~N}, \mathrm{~N}+\log \mathrm{N}$ are all $=$ $\Omega(\mathrm{N})$
\downarrow What if $\mathrm{T}(\mathrm{N})$ is both $\mathrm{O}(\mathrm{f}(\mathrm{N}))$ and $\Omega(\mathrm{f}(\mathrm{N}))$?

Theta and Little-Oh

$\rightarrow T(N)=\Theta(f(N))$ if and only if $T(N)=O(f(N))$ and $\mathrm{T}(\mathrm{N})=\Omega(\mathrm{f}(\mathrm{N}))$
\uparrow E.g. $0.0001 \mathrm{~N}, 2^{100} \mathrm{~N}+\log \mathrm{N}$ are all $=\Theta(\mathrm{N})$

- $\mathrm{T}(\mathrm{N})=\mathrm{o}(\mathrm{f}(\mathrm{N}))$ iff $\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$ and $\mathrm{T}(\mathrm{N}) \neq$ $\Theta(f(N))$
\uparrow E.g. $100 \log \mathrm{~N}, \mathrm{~N}^{0.9}, \operatorname{sqrt}(\mathrm{~N}), 17$ are all $=\mathrm{o}(\mathrm{N})$

Big-Oh, Omega, Theta, and Little-Oh

- Tips to guide your intuition:
- Think of $\mathrm{O}(\mathrm{f}(\mathrm{N})$) as "less than or equal to" $\mathrm{f}(\mathrm{N})$ \Rightarrow Upper bound, "grows slower than or same rate as" f(N)
\rightarrow Think of $\Omega(\mathrm{f}(\mathrm{N})$) as "greater than or equal to" $\mathrm{f}(\mathrm{N})$ \Rightarrow Lower bound, "grows faster than or same rate as" f(N)
- Think of $\Theta(f(N))$ as "equal to" $f(N)$ \Rightarrow "Tight" bound, same growth rate
- Think of $o(f(N))$ as "strictly less than" $f(N) \ldots$
\Rightarrow Strict upper bound
$\Rightarrow \mathrm{T}(\mathrm{N})=\mathrm{o}(\mathrm{f}(\mathrm{N})$) means $\mathrm{T}(\mathrm{N})$ grows strictly slower than $\mathrm{f}(\mathrm{N})$
- (True for large N and ignoring constant factors)

Big-Oh Analysis: Example 1

Problem: Find the sum of the first num integers stored in array V. Assume num \leq size of V .

```
public static int sum (int [ ] v, int num)
\{
    int temp_sum \(=0\);
    for ( int \(i=0 ; i<n u m ; i++\) )
        temp_sum += v[i] ;
    return temp_sum;
    \}
```

Running time $=$?

Big-Oh Analysis: Example 1

Problem: Find the sum of the first num integers stored in array V. Assume num \leq size of V .

```
public static int sum (int [ ] v, int num)
    \{
    int temp_sum \(=0 ; \quad / / 1\)
    for ( int \(\overline{\mathrm{i}}=0 ; \mathrm{i}<\) num; \(\mathrm{i}++\) ) // 2
        temp_sum \(+=v[i] ; \quad / / 3\)
    return temp_sum; // 4
    \}
```

- i goes from 0 to num-1= num iterations
- lines 1, 3, and 4 take fixed (constant) amount of time
- Running time $=$ constant $+($ num $) *$ constant $=O$ (num)
- Actually, Θ (num)
R. Rao, CSE 326

Big-Oh Analysis: Example 1 (Recursion)

Recursive function to find the sum of the first num integers stored in array \mathbf{V} :

```
public static int sum (int [ ] v, int num)
    \{
        if (num \(==0\) ) return 0;
        else return \(\operatorname{sum}(v\), num-1) \(+v[n u m-1]\);
    \}
```

- Running time $=$?

Big-Oh Analysis: Example 1 (Recursion)

Recursive function to find the sum of first num integers in \mathbf{V} :

```
public static int sum (int [ ] v, int num)
    \{
        if (num \(==0\) ) return 0 ; // constant time \(T_{1}\) for "if"
        else return sum(v,num-1) \(+v[\) num-1];
            // constant time \(+\mathrm{T}\left(\right.\) num-1) \(=\mathrm{T}_{2}+\mathrm{T}(\) num-1)
    \}
```

- Let T (num) be the running time of sum
- Then, T (num) $=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}($ num- 1$)=\mathrm{c}+\mathrm{T}($ num- 1$)$
$\cdot=2 * \mathrm{c}+\mathrm{T}$ (num-2) $=\ldots=$ num* $\mathrm{c}+\mathrm{T}(0)=$ num* $\mathrm{c}+\mathrm{c}_{1}$
$\bullet=\Theta$ (num) (same as iterative algorithm!)
R. Rao, CSE 326

Recurrence Relations for Run Time Analysis

- Common recurrence relations in analysis of algorithms:

$$
\begin{array}{ll}
\Rightarrow \mathrm{T}(\mathrm{~N})=\mathrm{T}(\mathrm{~N}-1)+\Theta(1) \Rightarrow & \mathrm{T}(\mathrm{~N})=\mathrm{O}(\mathrm{~N}) \\
\Rightarrow \mathrm{T}(\mathrm{~N})=\mathrm{T}(\mathrm{~N}-1)+\Theta(\mathrm{N}) \Rightarrow & \mathrm{T}(\mathrm{~N})=\mathrm{O}\left(\mathrm{~N}^{2}\right) \\
\Rightarrow \mathrm{T}(\mathrm{~N})=\mathrm{T}(\mathrm{~N} / 2)+\Theta(1) \Rightarrow & \mathrm{T}(\mathrm{~N})=\mathrm{O}(\log \mathrm{~N}) \\
\Rightarrow \mathrm{T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\Theta(\mathrm{N}) \Rightarrow & \mathrm{T}(\mathrm{~N})=\mathrm{O}(\mathrm{~N} \log \mathrm{~N})
\end{array}
$$

\Rightarrow How do you get these? Just expand the right side and count!

- Note: Multiplicative constants matter in recurrence relations:
\Rightarrow If $T(N)=4 T(N / 2)+\Theta(N)$, then is $\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{N}) ? \mathrm{O}(\mathrm{N} \log \mathrm{N}) ? \mathrm{O}\left(\mathrm{N}^{2}\right)$?

Recurrence Relations for Run Time Analysis

\uparrow Common recurrence relations in analysis of algorithms:

$$
\begin{array}{ll}
\Rightarrow \mathrm{T}(\mathrm{~N})=\mathrm{T}(\mathrm{~N}-1)+\Theta(1) \Rightarrow & \mathrm{T}(\mathrm{~N})=\mathrm{O}(\mathrm{~N}) \\
\Rightarrow \mathrm{T}(\mathrm{~N})=\mathrm{T}(\mathrm{~N}-1)+\Theta(\mathrm{N}) \Rightarrow & \mathrm{T}(\mathrm{~N})=\mathrm{O}\left(\mathrm{~N}^{2}\right) \\
\Rightarrow \mathrm{T}(\mathrm{~N})=\mathrm{T}(\mathrm{~N} / 2)+\Theta(1) \Rightarrow & \mathrm{T}(\mathrm{~N})=\mathrm{O}(\log \mathrm{~N}) \\
\Rightarrow \mathrm{T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\Theta(\mathrm{N}) \Rightarrow & \mathrm{T}(\mathrm{~N})=\mathrm{O}(\mathrm{~N} \log \mathrm{~N})
\end{array}
$$

- Note: Multiplicative constants matter in recurrence relations: $\Rightarrow T(N)=4 T(N / 2)+\Theta(N)$ is $O\left(N^{2}\right)$, not $O(N \log N)!$

These recurrences in their full glory in future lectures we will see...

Example 2: Fibonacci Numbers

\downarrow Recall our old friend Signor Fibonacci and his numbers:
$1,1,2,3,5,8,13,21,34, \ldots 00$ 。
\Rightarrow First two are defined to be 1
\Rightarrow Rest are sum of preceding two
$\Rightarrow \mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}(\mathrm{n}>1)$

Leonardo Pisano Fibonacci (1170-1250)

Example 2: Recursive Fibonacci

- public static int fib(int N) \{
if $(\mathrm{N}<0)$ return 0 ; //invalid input
if $(\mathrm{N}==0 \| \mathrm{N}==1)$ return 1; //base cases else return fib(N-1)+fib(N-2);
\}
\star Running time $\mathrm{T}(\mathrm{N})=$?

Example 2: Recursive Fibonacci

```
\(\rightarrow\) public static int fib(int N) \{
    if \((\mathrm{N}<0)\) return 0; // time \(=1\) for the < operation
    if \((\mathrm{N}==0| | \mathrm{N}==1)\) return 1 ; // time = 3 for \(2==, 1| |\)
    else return fib(N-1)+fib(N-2); // T(N-1)+T(N-2)+1
    \}
\(\downarrow\) Running time \(\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{T}(\mathrm{N}-2)+5\)
\(\leftrightarrow\) Using \(\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}\) we can show by induction that
    \(T(N) \geq F_{N}\). We can also show by induction that
    \(\mathrm{F}_{\mathrm{N}} \geq(3 / 2)^{\mathrm{N}}\)
```


Example 2: Recursive Fibonacci

- public static int fib(int N) \{
if $(\mathrm{N}<0)$ return 0 ; // time $=1$ for the < operation if $(\mathrm{N}==0| | \mathrm{N}==1)$ return 1 ; // time $=3$ for $2==, 1| |$ else return fib(N-1)+fib(N-2); // T(N-1)+T(N-2)+1 \}
\downarrow Running time $\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{T}(\mathrm{N}-2)+5$
\uparrow Using $F_{n}=F_{n-1}+F_{n-2}$ we can show by induction that $T(N) \geq F_{N}$. We can also show by induction that $F_{N} \geq(3 / 2)^{N}$

Example 2: Iterative Fibonacci

```
- public static int fib_iter(int N) \{
        int fib0 \(=1\), fib1 \(=1\), fibj \(=1\);
        if \((\mathrm{N}<0)\) return 0 ; //invalid input
        for (int \(\mathrm{j}=2 ; \mathrm{j}<=\mathrm{N} ; \mathrm{j}++\) ) \{ //all fib nos. up to N
            fibj \(=\) fib0 + fib1;
                fib0 = fib1;
                fib1 \(=\) fibj;
        \}
        return fibj;
    \}
```

\rightarrow Running time $=$?

Example 2: Iterative Fibonacci

- public static int fib_iter(int N) \{
int fib0 $=1$, fib1 $=1$, fibj $=1$; // constant time if ($\mathrm{N}<0$) return 0; // constant time for (int j = 2; j <= N; j++) \{ //N-1 iterations
fibj $=$ fib0 + fib1; // constant time fib0 = fib1; // constant time
fib1 = fibj; // constant time \} return fibj; \}
- Running time $=$

$$
\mathrm{T}(\mathrm{~N})=\text { constant }+(\mathrm{N}-1) \cdot \text { constant }=\Theta(\mathrm{N})
$$

Example 2: Iterative Fibonacci

```
- public static int fib_iter(int N) \{
    int fib0 = 1, fib1 = 1, fibj = 1; // constant time
    if ( \(\mathrm{N}<0\) ) return 0 ; // constant time
    for (int \(\mathrm{j}=2 ; \mathrm{j}<=\mathrm{N} ; \mathrm{j}++\) ) \(\{/ / \mathrm{N}-1\) iterations
        fibj \(=\) fib0 + fib1; // constant time
        fib0 = fib1; // constant time
        fib1 = fibj; // constant time
    \}
        return fibj; \}
\(\rightarrow\) Running time \(=\)
    \(\mathrm{T}(\mathrm{N})=\) constant \(+(\mathrm{N}-1) \cdot\) constant \(=\Theta(\mathrm{N})\)
    \(\Rightarrow\) Exponentially faster than recursive

\section*{Example 3: Time and Space Tradeoffs}
\(\uparrow\) Problem DUP: Given an array A of \(n\) positive integers, are there any duplicates?
- For example, A: 34, 9, 40, 87, 223, 109, 58, 9, 71, 8
- An easy algorithm for DUP:
```

for (i = 0; i < N-1; i++)
for (j = i+1; j < N; j++)
if (A[i] == A[j]) {
<print "Duplicates!"> return 0;}
<print "No Duplicates">

```
\(\downarrow\) Space required \(=\) ?

\section*{Example 3: Time and Space Tradeoffs}
- Problem DUP: Given an array A of \(n\) positive integers, are there any duplicates?
- An easy algorithm for DUP:
\[
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{N}-1 ; \mathrm{i}++) \\
& \quad \text { for }(\mathrm{j}=\mathrm{i}+1 ; \mathrm{j}<\mathrm{N} ; \mathrm{j}++) \\
& \quad \text { if }(\mathrm{A}[\mathrm{i}]==\mathrm{A}[\mathrm{j}])\{ \\
& \quad \text { <print "Duplicates!"> return } 0 ;\} \\
& \text { <print "No Duplicates"> }
\end{aligned}
\]
\(\uparrow\) Space required (array +2 variables) \(=\mathrm{N}+2=\Theta(\mathrm{N})\)
\(\Rightarrow\) Does not depend on size of values stored in \(A\)
- Running time: How many steps in the worst case?

\section*{Example 3: Time and Space Tradeoffs}
- Analyze the running time of easy algorithm for DUP: for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{N}-1 ; \mathrm{i}++\) ) // N-1 iterations
\[
\text { for }(\mathrm{j}=\mathrm{i}+1 ; \mathrm{j}<\mathrm{N} ; \mathrm{j}++) / / \mathrm{N}-\mathrm{i}-1 \text { iterations }
\] if \((A[i]==A[j])\{/ /\) constant time \(c\) <print "Duplicates!"> return 0; \}
<print "No Duplicates">
\(\downarrow\) Worst case \(=\) no duplicates. Total time \(=\) ?
\[
\begin{aligned}
& \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} c=\sum_{i=1}^{N-1} c(N-i-1)=c \sum_{i=1}^{N-1} N-c \sum_{i=1}^{N-1} i-c(N-1) \\
& =c N(N-1)-c \frac{(N-1) N}{2}-c(N-1)=\Theta\left(N^{2}\right)
\end{aligned}
\]

\section*{Example 3: Trading more space for less time}
\(\downarrow\) New Algorithm for DUP:
\(\Rightarrow\) Idea: Use \(\mathrm{A}[\mathrm{i}]\) as index into new array B initialized to 0 's for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++\) )
if \((\mathrm{B}[\mathrm{A}[\mathrm{i}]]==1)\{/ /\) value in \(\mathrm{A}[\mathrm{i}]\) already present <print "Duplicates!"> return 0; \}
else \(B[A[i]]=1 ; \quad / /\) mark value in \(A[i]\) as present <print "No Duplicates">
\(\Rightarrow\) Similar to detecting collisions in hashing (Chapter 5)
- Worst Case Running Time \(=\) ?
- Space Required \(=\) ?

\section*{Example 3: Trading more space for less time}
\(\rightarrow\) New Algorithm for DUP:
for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++\) )
if \((\mathrm{B}[\mathrm{A}[\mathrm{i}]]==1)\) \{ // value in \(\mathrm{A}[\mathrm{i}]\) already present <print "Duplicates!"> return 0; \}
 <print "No Duplicates">
- Worst Case Running Time \(=\mathrm{O}(\mathrm{N})\)
\(\checkmark\) Space Required \(=\mathrm{O}\left(2^{\mathrm{m}}\right)\) where m is the number of bits required to represent the largest value that can potentially occur in A. E.g. \(\mathrm{m}=8\) if \(\max\) value of \(\mathrm{A}[\mathrm{i}]=255\).
\(\uparrow\) Prev. algorithm: more time \(\left[\Theta\left(\mathrm{N}^{2}\right)\right]\) but less space \([\Theta(\mathrm{N})]\)
\(\uparrow\) Such tradeoffs between space and time are common...
R. Rao, CSE 326

\section*{Example 4: Searching for an Item}
- Problem: Search for an item X in a sorted array A. Return index of item if found, otherwise return -1 .
\(\downarrow\) Brainstorming: What is an efficient way of doing this?
A \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline-4 & -3 & 5 & 7 & 12 & 35 & 56 & 98 & 101 & 124 \\
\hline
\end{tabular}
\(X=101\)

\section*{Example 4: Searching for an Item}
- Problem: Search for an item X in a sorted array A. Return index of item if found, otherwise return -1 .
\(\uparrow\) Idea: Compare X with middle item \(\mathrm{A}[\mathrm{mid}]\), go to left half if \(\mathrm{X}<\mathrm{A}[\mathrm{mid}]\) and right half if \(\mathrm{X}>\mathrm{A}[\mathrm{mid}]\). Repeat.


Found!
Return Mid \(=8\)
R. Rao, CSE 326

\section*{Example 4: Binary Search}
```

A | -4 | -1 | 5 | 7 | 12 | 35 | 56 | 98 | 101 | 124 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

public static int BinarySearch(int [] A, int X, int N)
\{
int Low = 0, Mid, High = N-1;
while(Low <= High)
Mid $=($ Low + High $) / 2$; // Find middle of array
if ($X>A[$ Mid]) // Search second half of array
Low $=$ Mid +1 ;
else if $(X<A[$ Mid $]$) // Search first half
High = Mid - 1;
else return Mid; // Found X!
\}
return NOT_FOUND;
\}

Example 4: Running Time of Binary Search

\downarrow Given an array A with N elements, what is the worst case running time of BinarySearch?

- Think about it over the weekend...
\star We will discuss the answer in the next class

