
1R. Rao, CSE 326

Trees, Trees, and Trees

✦ Today’s agenda:
➭ Traversing trees
➭ Binary Search Trees
➭ ADT Operations: Find, Insert, Remove (Delete), etc…

✦ Covered in Chapter 4 of the text

2R. Rao, CSE 326

Example Arithmetic Expression:
A + (B * (C / D))

Tree for the above expression:
Leaves = operands (constants/variables)
Non-leaf nodes = operators

Example: Representing Arithmetic Expressions

+

A *

B /

C D

• Used in most compilers
• No parenthesis need – use tree structure
• Can speed up calculations e.g. replace

/ node with C/D if C and D are known

How do you evaluate the expression
represented by the tree?

3R. Rao, CSE 326

Evaluating Arithmetic Expression Trees

+

A *

B /

C D

How do you evaluate the expression
represented by this tree?

1. Recursively evaluate left and right
subtrees

2. Apply operation at the root

Known as “Postorder traversal”
Process children first and then the
root (therefore “post” order)

4R. Rao, CSE 326

Traversing Trees

✦ Postorder: Children first, then Root
A B C D / * +

✦ Preorder: Root, then Children
+ A * B / C D

✦ Inorder: Left child, Root, Right child
A + B * C / D

+

A *

B /

C D

5R. Rao, CSE 326

void print_preorder (TreeNode T)
{ TreeNode P;
if (T == NULL) return;
else { <Print Element stored in T>

P = T.FirstChild;
while (P != NULL) {
print_preorder (P);
P = P.NextSibling; }

}
}

Example Pseudocode for Recursive Preorder

What is the running time for a tree with N nodes?

6R. Rao, CSE 326

Recursion makes
me nervous…can’t
we do this with a

stack?

7R. Rao, CSE 326

void Stack_Preorder (TreeNode T, Stack S) {
if (T == NULL) return; else push(T,S);
while (!isEmpty(S)) {
T = pop(S);
<Print Element stored in T>
if (T.NextSibling != NULL)

push(T.NextSibling, S);
if (T.FirstChild != NULL)

push(T.FirstChild, S);
}

}

Preorder Traversal with a Stack

What is the running time for a tree with N nodes?

8R. Rao, CSE 326

Binary Trees

✦ Every node has at most two children
➭ Most popular tree in computer science

✦ Given N nodes, what is the minimum depth of a binary tree?

Depth 0: N = 1 = 20 nodes
Depth 1: N = 2 to 3 nodes = 21 to 21+1-1 nodes
At depth d, N = ?

9R. Rao, CSE 326

Deep Facts about Binary Trees

✦ Given N nodes, what is the minimum depth of a binary tree?
Depth 0: N = 1 node = 20

Depth 1: N = 2 to 3 nodes = 21 to 21+1-1
At depth d, N = 2d to 2d+1-1 nodes (a full tree)
So, minimum depth d is:
log N ≤ d ≤ log(N+1)-1 or Θ(log N)

✦ What is the maximum depth of a binary tree?

10R. Rao, CSE 326

More Deep Facts about Binary Trees

✦ Minimum depth of N-node binary tree is Θ(log N)

✦ What is the maximum depth of a binary tree?
➭ Degenerate case: Tree is a linked list!
➭Maximum depth = N-1

✦ Goal: Would like to keep depth at around log N to get better
performance than linked list for operations like Find.

11R. Rao, CSE 326

Array Implementation of Binary Trees

✦ Used mostly for complete binary trees
➭ A complete tree has no gaps when you scan the

nodes left-to-right, top-to-bottom

✦ Idea: Use left-to-right scan to impose a
linear order on the tree nodes

✦ Implementation:
➭ Children of A[i] = A[2i+1], A[2i+2]
➭ Use a default value to indicate empty node
➭ Why is this implementation inefficient for

non-complete trees?

15

24

14

97

…3245971514

MAX�543210

5 3

12R. Rao, CSE 326

Binary Search Trees

✦ Binary search trees are binary trees in
which the value in every node is:

> all values in the node’s left subtree

< all values in the node’s right subtree

9

5

10

96 99

94

97
x

L R

x < all values in Rx > all values in L

13R. Rao, CSE 326

Binary Search Trees

✦ Handling Duplicates:
➭ Increment a counter stored in item’s node

or
➭ Use a linked list or another search tree at

item’s node

✦ Application: “Look-up” table
➭ E.g.: Academic records systems:

Given SSN, return student record
SSN stored in each node as the key value

➭ E.g.: Given zip code, return city/state
➭ E.g.: Given name, return address/phone no.

➧ Can use dictionary order for strings

9

5

10

94

97

3

1

11

2

14R. Rao, CSE 326

Operations on Binary Search Trees

✦ Main Operations:
FindMin(BinaryNode T)
FindMax(BinaryNode T)
Find(Comparable X, BinaryNode T)
Insert(Comparable X, BinaryNode T)
Remove(Comparable X, BinaryNode T)

✦ How would you implement these?
➭ Exercise: How does Find(X,T) work?

9

5

10

96 99

94

97

Hint: Recursive definition of
BSTs allows recursive routines!

T
Find(96,T)

15R. Rao, CSE 326

Find on BSTs

✦ Exercise: How does Find(X,T) work?
1. If T null, return null
2. If X < T.Element

return Find(X,T.left)
else if X > T.Element
return Find(X,T.right)

else return T //Found!

9

5

10

96 99

94

97

X = 96

T

16R. Rao, CSE 326

Insert Operation

✦ Similar to Find

✦ Insert(Comparable X, BinaryNode T)

If T null, Insert X at T
else if X < T.Element

T.left = Insert(X,T.left)
else if X > T.Element

T.right = Insert(X,T.right)
else

Duplicate:
Update duplicates counter

Return T

10

96 99

94

97
?

Insert 95

17R. Rao, CSE 326

Example of Insert

✦ Example: Insert 95

10

96 99

94

97

10

96 99

94

97

95

18R. Rao, CSE 326

Remove (or Delete) Operation

✦ Remove is a bit trickier…Why?

✦ Suppose you want to remove 10

✦ Strategy:
1. Find 10
2. Remove the node containing 10

✦ Problem: When you remove a node,
what do you replace it with?

10

5 24

94

97

11

17

19R. Rao, CSE 326

A Problem with Remove

✦ Problem: When you remove a node,
what do you replace it with?

✦ Three cases:
1. If it has no children, with NULL

E.g. Remove 5
2. If it has 1 child, with that child

E.g. Remove 24 (replace with 11)
3. If it has 2 children, with the smallest

value node in its right subtree
E.g. Remove 10 (replace with 11)

✦ Preserves BST property

10

5 24

94

97

11

17

20R. Rao, CSE 326

More Trouble with Remove

✦ Problem: When you remove a node,
what do you replace it with?
3. If it has 2 children, with the smallest

value node in its right subtree
E.g. Remove 10 (replace with 11)

10

5 24

94

97

11

17

But what about the
hole left by 11?

21R. Rao, CSE 326

Example: Remove “10”

10

5 24

94

97

11

17

11

5 24

94

97

11

17

1. Find 10,
Replace with
smallest
value in
right subtree

2. Then,
recursively
remove the
node
containing 11

22R. Rao, CSE 326

Example: Remove “10”

11

5 24

94

97

11

17

2. Remove
“11” in
right subtree
(recursive
remove)

3. Find “11”,
1 child – so
replace by child

11

5 24

94

97

17

17

4. Remove “17”
No child, so
replace by NULLNULL

23R. Rao, CSE 326

Summary of Remove

✦ Removing a node containing X:
1. Find the node containing X
2. Replace it with:

If it has no children, with NULL
If it has 1 child, with that child
If it has 2 children, with the node with
the smallest value in its right subtree,
(or largest value in left subtree)

3. Recursively remove node used in 2 and 3

✦ Worst case: Recursion propagates all
the way to a leaf node – time is
O(depth of tree)

10

5 24

94

97

11

17

24R. Rao, CSE 326

Next Class:

A Balancing Act with Trees

Species of Trees: AVL, splay, and B

To Do:

Read Chapter 4

Finish Homework #1 (due Wednesday)

Have a great
weekend!

