Trees, Trees, and Trees

- Today's agenda:
\Rightarrow Traversing trees
\Rightarrow Binary Search Trees
\Rightarrow ADT Operations: Find, Insert, Remove (Delete), etc...
\star Covered in Chapter 4 of the text

Example: Representing Arithmetic Expressions

Example Arithmetic Expression:
$\mathrm{A}+(\mathrm{B} *(\mathrm{C} / \mathrm{D}))$
Tree for the above expression:
Leaves $=$ operands (constants/variables)
Non-leaf nodes $=$ operators

- Used in most compilers
- No parenthesis need - use tree structure
- Can speed up calculations e.g. replace / node with C/D if C and D are known

How do you evaluate the expression represented by the tree?

Evaluating Arithmetic Expression Trees

How do you evaluate the expression represented by this tree?

1. Recursively evaluate left and right subtrees
2. Apply operation at the root

Known as "Postorder traversal"
Process children first and then the root (therefore "post" order)

Traversing Trees

\rightarrow Postorder: Children first, then Root
ABCD / * +
\uparrow Preorder: Root, then Children
+A * B / C D
\uparrow Inorder: Left child, Root, Right child $\mathrm{A}+\mathrm{B} * \mathrm{C} / \mathrm{D}$

Example Pseudocode for Recursive Preorder

```
void print preorder (TreeNode T)
{ TreeNode P;
    if ( T == NULL ) return;
    else { <Print Element stored in T>
        P = T.FirstChild;
        while (P != NULL) {
            print preorder ( P );
            P = P.NextSibling; }
    }
}
```

What is the running time for a tree with N nodes?

Preorder Traversal with a Stack

```
void Stack_Preorder (TreeNode T, Stack S) {
    if (T == NULL) return; else push(T,S);
    while (!isEmpty(S)) {
        T = pop(S);
        <Print Element stored in T>
        if (T.NextSibling != NULL)
            push(T.NextSibling, S);
        if (T.FirstChild != NULL)
                push(T.FirstChild, S);
    }
}
```

What is the running time for a tree with N nodes?

Binary Trees

\uparrow Every node has at most two children
\Rightarrow Most popular tree in computer science
\uparrow Given N nodes, what is the minimum depth of a binary tree?

Depth 0: $\mathrm{N}=1=2^{0}$ nodes
Depth 1: $\mathrm{N}=2$ to 3 nodes $=2^{1}$ to $2^{1+1}-1$ nodes
R. Rao, CSE 326

At depth $\mathrm{d}, \mathrm{N}=$?

Deep Facts about Binary Trees

\downarrow Given N nodes, what is the minimum depth of a binary tree?
Depth 0: $\mathrm{N}=1$ node $=2^{0}$
Depth 1: $\mathrm{N}=2$ to 3 nodes $=2^{1}$ to $2^{1+1}-1$
At depth $\mathrm{d}, \mathrm{N}=2^{\mathrm{d}}$ to $2^{\mathrm{d}+1}-1$ nodes (a full tree)
So, minimum depth d is:
$\log \mathrm{N} \leq \mathrm{d} \leq \log (\mathrm{N}+1)-1$ or $\Theta(\log \mathrm{N})$
\downarrow What is the maximum depth of a binary tree?

More Deep Facts about Binary Trees

- Minimum depth of N -node binary tree is $\Theta(\log \mathrm{N})$
\downarrow What is the maximum depth of a binary tree?
\Rightarrow Degenerate case: Tree is a linked list!
\Rightarrow Maximum depth $=\mathrm{N}-1$
\downarrow Goal: Would like to keep depth at around $\log \mathrm{N}$ to get better performance than linked list for operations like Find.

Array Implementation of Binary Trees

\uparrow Used mostly for complete binary trees
\Rightarrow A complete tree has no gaps when you scan the nodes left-to-right, top-to-bottom
\uparrow Idea: Use left-to-right scan to impose a linear order on the tree nodes

- Implementation:
\Rightarrow Children of $\mathrm{A}[\mathrm{i}]=\mathrm{A}[2 \mathrm{i}+1], \mathrm{A}[2 \mathrm{i}+2]$
\Rightarrow Use a default value to indicate empty node

\Rightarrow Why is this implementation inefficient for non-complete trees?
R. Rao, CSE 326

0	1	2	3	4	5	\ldots	MAX
14	15	97	5	24	3	\ldots	

Binary Search Trees

\uparrow Binary search trees are binary trees in which the value in every node is:
$>$ all values in the node's left subtree
< all values in the node's right subtree

Binary Search Trees

\uparrow Handling Duplicates:
\Rightarrow Increment a counter stored in item's node or
\Rightarrow Use a linked list or another search tree at item's node

- Application: "Look-up" table
\Rightarrow E.g.: Academic records systems:
Given SSN, return student record

SSN stored in each node as the key value
\Rightarrow E.g.: Given zip code, return city/state
\Rightarrow E.g.: Given name, return address/phone no.

- Can use dictionary order for strings

Operations on Binary Search Trees

\rightarrow Main Operations:
FindMin(BinaryNode T)
FindMax(BinaryNode T)
Find(Comparable X, BinaryNode T)
Insert(Comparable X, BinaryNode T)
Remove(Comparable X, BinaryNode T)
\uparrow How would you implement these?

Find on BSTs

\downarrow Exercise: How does Find(X,T) work?

1. If T null, return null
2. If $\mathrm{X}<\mathrm{T}$.Element return Find(X,T.left) else if X > T.Element return Find(X,T.right) else return T //Found!

Insert Operation

- Similar to Find
- Insert(Comparable X, BinaryNode T)

If T null, Insert X at T
else if $\mathrm{X}<\mathrm{T}$.Element
T.left $=\operatorname{Insert}(X, T . l e f t)$
else if $\mathrm{X}>$ T.Element
T.right $=\operatorname{Insert}(X, T . r i g h t)$
else
Duplicate:
Update duplicates counter
Return T

Example of Insert

- Example: Insert 95

Remove (or Delete) Operation

- Remove is a bit trickier...Why?
- Suppose you want to remove 10
- Strategy:

1. Find 10
2. Remove the node containing 10

- Problem: When you remove a node, what do you replace it with?

A Problem with Remove

- Problem: When you remove a node, what do you replace it with?
- Three cases:

1. If it has no children, with NULL E.g. Remove 5
2. If it has 1 child, with that child E.g. Remove 24 (replace with 11)
3. If it has 2 children, with the smallest value node in its right subtree
E.g. Remove 10 (replace with 11)

- Preserves BST property

More Trouble with Remove

- Problem: When you remove a node, what do you replace it with?

3. If it has 2 children, with the smallest value node in its right subtree E.g. Remove 10 (replace with 11)

Example: Remove " 10 "

Summary of Remove

\uparrow Removing a node containing X:

1. Find the node containing X
2. Replace it with:

If it has no children, with NULL
If it has 1 child, with that child
If it has 2 children, with the node with the smallest value in its right subtree, (or largest value in left subtree)
3. Recursively remove node used in 2 and 3

- Worst case: Recursion propagates all the way to a leaf node - time is O (depth of tree)

Next Class:

A Balancing Act with Trees
Species of Trees: AVL, splay, and B

