CSE 326 Lecture 8: Getting to know AVL Trees

- Today's Topics:
$\Rightarrow$ Balanced Search Trees
- AVL Trees and Rotations
- Splay trees
$\star$ Covered in Chapter 4 of the text


## Recall from Last Time: AVL Trees

$\uparrow$ AVL trees are height-balanced binary search trees
$\downarrow$ Balance factor of a node $=$
height(left subtree) - height(right subtree)
$\uparrow$ An AVL tree can only have balance factors $+1,0$, or -1 at every node
$\Rightarrow$ Height of an empty subtree is defined to be -1

- Implementation: Store current heights in each node and calculate balance factors when needed from subtrees' root nodes.


## Is this tree AVL?



## Is this tree AVL?



## Why AVL?

$\rightarrow$ Can prove: Height of an AVL tree of N nodes is always $\mathrm{O}(\log \mathrm{N})$ (see previous lecture and textbook)
$\uparrow$ Run time for accessing any node is therefore $\mathrm{O}(\log \mathrm{N})$


Height =

$\uparrow$ One problem: Insert/Remove may upset AVL balance

## Insert Example

No longer an AVL tree


Problem: Insert may cause balance factor to become 2 or -2 for some node on the path from insertion point to root node

## Restoring Balance

$\rightarrow$ Idea: After Inserting the new node,

1. Back up to root updating heights along the access path
2. If Balance Factor $=2$ or -2 , adjust tree by rotation around deepest such node.


## Rotating to restore Balance: A Simple Example



## Various Cases of Insertion



Tree before insertion ( $\mathrm{BF}=$ Balance Factor)

## "Outside" Case



Tree after insertion

## "Inside" Case



Tree after insertion

## Insertions in AVL Trees

Let the node that needs rebalancing be $\alpha$.
There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of $\alpha$.
2. Insertion into right subtree of right child of $\alpha$.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of $\alpha$.
4. Insertion into left subtree of right child of $\alpha$.

Rebalancing is performed through four separate rotation algorithms.

Insertions in AVL Trees: Outside Case


## Insertions in AVL Trees: Outside Case



Insertions in AVL Trees: Outside Case


Insertions in AVL Trees: Outside Case


Insertions in AVL Trees: Outside Case


$\qquad$
$\qquad$

Insertions in AVL Trees: Inside Case


## Insertions in AVL Trees: Inside Case



Insertions: Inside Case Take 2


Insertions in AVL Trees: Inside Case

$\qquad$

Insertions in AVL Trees: Inside Case


Insertions in AVL Trees: Inside Case



## AVL Tree On Board Exercise

$\uparrow$ Insert 8, 1, 0, 2 in that order into following AVL tree:


## Pros and Cons of AVL Trees

Arguments for AVL trees:

1. Search is $\underline{O}(\log \mathrm{~N})$ since AVL trees are always balanced.
2. The height balancing adds no more than a constant factor to the speed of insertion. (Why?)

Arguments against using AVL trees:

1. Difficult to program \& debug; more space for height info.
2. Asymptotically faster but can be slow in practice.
3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
4. May be OK to have $\mathrm{O}(\mathrm{N})$ for a single operation if total run time for many consecutive operations is fast...
R. Rao, CSE 326
(enter Splay Trees) 27


## Splay Trees

Splay trees are tree structures that:

1. Are not perfectly balanced all the time
2. Allow actual Find operations to balance the tree so that future operations may run faster
Based on the heuristic:
If X is accessed once, it is likely to be accessed again.

- After node X is accessed, perform "splaying" operations to bring X up to the root of the tree.
- Do this in a way that leaves the tree more balanced as a whole.


## Splaying: A Motivating Example

Initial tree


After $\operatorname{Find}(\mathrm{R})$


Splay ldea: Get
R up to the root
using rotations

After splaying with R


## Splay Tree Terminology

- Let X be a non-root node with $\geq 2$ ancestors.
- Let P be its parent node.
- Let G be its grandparent node.



## Splay Tree Operations

1. Nodes must contain a parent pointer.

element left right parent
2. When $X$ is accessed, apply one of six rotation operations:

- Single Rotations (X has a P but no G)
- zig-left, zig-right
- Double Rotations (X has both a P and a G)
- zig-zig-left, zig-zig-right
- zig-zag-left, zig-zag-right

Splay Trees: Zig operation

* "Zig" is just a single rotation, as in an AVL tree
$\uparrow$ Suppose R was the node that was accessed (e.g. using Find)

$\rightarrow$ Zig-right moves R to the top can access R faster next time

Splay Trees: Zig operation

- Suppose Q is accessed (e.g. using Find)

$\checkmark$ Zig-left moves Q to the top


## Splay Trees: Zig-Zig operation

- "Zig-Zig" consists of two single rotations of the same type (assume R is the node that was accessed):

- Again, due to "zig-zig" splaying, $R$ has bubbled to the top!
- Note: Parent-Grandparent rotated first.


## Splay Trees: Zig-Zag operation

- "Zig-Zag" consists of two rotations of the opposite type (assume R is the node that was accessed):

$\uparrow$ "Zig-Zag" splaying also causes R to move to the top.

Splay Trees: Example

(a)

(b)

(c)

(d)

Restructuring a tree with splaying after accessing $T(a-c)$ and then $R(c-d)$.

## Splay Trees: Do-It-Yourself Exercise

$\uparrow$ Insert the keys $1,2, \ldots, 7$ in that order into an empty splay tree.

- What happens when you access " 7 "?


## Analysis of Splay Trees: Amortization

Examples suggest that splaying causes tree to get balanced. The actual analysis is rather advanced and is in Chapter 11.

Result of Analysis: Any sequence of $M$ operations on a splay tree of size N takes $\mathrm{O}(\mathrm{M} \log \mathrm{N})$ time.

So, the amortized running time for one operation is $\mathrm{O}(\log \mathrm{N})$.
This guarantees that even if the depths of some nodes get very large, you cannot get a long sequence of $\mathrm{O}(\mathrm{N})$ searches because each search operation causes a rebalance. Without splaying, total time could be $\mathrm{O}(\mathrm{MN})$.


