
1R. Rao, CSE 326

CSE 326 Lecture 8: Getting to know AVL Trees

✦ Today’s Topics:
➭ Balanced Search Trees
➧ AVL Trees and Rotations
➧ Splay trees

✦ Covered in Chapter 4 of the text

2R. Rao, CSE 326

Recall from Last Time: AVL Trees

✦ AVL trees are height-balanced binary search trees

✦ Balance factor of a node =
height(left subtree) - height(right subtree)

✦ An AVL tree can only have balance factors +1, 0, or –1
at every node
➭ Height of an empty subtree is defined to be -1

✦ Implementation: Store current heights in each node and
calculate balance factors when needed from subtrees’ root
nodes.

3R. Rao, CSE 326

Is this tree AVL?

6

4

1

8

7

21

1

9

Heights

0

0

3

4R. Rao, CSE 326

Is this tree AVL?

6

4

1

8

7

21

1

9

Heights

0

0

3 6

4

1

8

7

-1

1-(-1) = 21

(-1)-0 = -1

9

Balance
factors

0

0
No!

Ain’t
ALV.

5R. Rao, CSE 326

Why AVL?

✦ Can prove: Height of an AVL tree of N nodes is always
O(log N) (see previous lecture and textbook)

✦ Run time for accessing any node is therefore O(log N)

✦ One problem: Insert/Remove may upset AVL balance

6

4 9

1 5 8

0

10

0
0

0

0

1 -1

0

6

4

1

7

90
Height =
O(log N)

6R. Rao, CSE 326

Insert Example

0

1 -1

0

6

5

4

7

90

Insert 3
1

2 -1

1

6

5

4

7

90

0 3

No longer an AVL tree

Problem: Insert may cause balance factor to become 2 or –2
for some node on the path from insertion point to root node

7R. Rao, CSE 326

Restoring Balance

✦ Idea: After Inserting the new node,
1. Back up to root updating heights along the access path
2. If Balance Factor = 2 or –2, adjust tree by rotation

around deepest such node.

1

2 -1

1

6

5

4

7

90

0 3

8R. Rao, CSE 326

Rotating to restore Balance: A Simple Example

0

1 -1

0

6

5

4

7

90

Insert 3 1

2 -1

1

6

5

4

7

90

0 3

0

0 -1

0

6

4

3

7

9 05 0

Rotate

AVL Not AVL AVL

9R. Rao, CSE 326

BF = 1

BF = 0

BF = 0 BF = 0

BF = 1

BF = 0

BF = 0BF = 0

BF = 0

Tree before insertion
(BF = Balance Factor)

Various Cases of Insertion

10R. Rao, CSE 326

BF = ?

BF = ?

BF = 0
BF = ?

BF = 0

Tree after insertion
BF = 0

“Outside” Case

BF = ?

11R. Rao, CSE 326

BF =

BF =

BF = BF =

BF =

BF =

BF =BF =

BF =

Tree after insertion
BF = 0

“Inside” Case

12R. Rao, CSE 326

Let the node that needs rebalancing be α.

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of α.
2. Insertion into right subtree of right child of α.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of α.
4. Insertion into left subtree of right child of α.

Rebalancing is performed through four separate rotation
algorithms.

Insertions in AVL Trees

13R. Rao, CSE 326

j

k

X Y

Z

Consider a valid
AVL subtree

Insertions in AVL Trees: Outside Case

14R. Rao, CSE 326

j

k

X
Y

Z

Inserting into X
destroys the AVL
property

Insertions in AVL Trees: Outside Case

15R. Rao, CSE 326

j

k

X
Y

Z

Do a “right rotation”

Insertions in AVL Trees: Outside Case

16R. Rao, CSE 326

j

k

X
Y

Z

Insertions in AVL Trees: Outside Case

Do a “right rotation”:
1. Make j point to Y

17R. Rao, CSE 326

j
k

X Y Z

Insertions in AVL Trees: Outside Case

AVL property has been restored!
(“Left rotation” is mirror symmetric)

Do a “right rotation”:
2. Make k point to j

18R. Rao, CSE 326

j

k

X Y

Z

Insertions in AVL Trees: Inside Case

Consider a valid
AVL subtree

19R. Rao, CSE 326

Inserting into Y
destroys the
AVL property

j

k

X
Y

Z

Insertions in AVL Trees: Inside Case

Does “right rotation”
restore balance?

20R. Rao, CSE 326

j
k

X

Y
Z

“Right rotation”
don’t do nothin’
fa dis tree…

Insertions in AVL Trees: Inside Case

21R. Rao, CSE 326

Consider the structure
of subtree Y… j

k

X
Y

Z

Insertions: Inside Case Take 2

22R. Rao, CSE 326

j

k

X

V

Z

W

i

Y = node i and
subtrees V and W

Insertions in AVL Trees: Inside Case

23R. Rao, CSE 326

j

k

X

V

Z

W

i

Insertions in AVL Trees: Inside Case

Let’s try a left-right
“double rotation” . . .

24R. Rao, CSE 326

j

k

X V

Z
W

i

Steps for Left-Right
Double Rotation

Insertions in AVL Trees: Inside Case

1. Left Rotation:
Adjust relevant
pointers…

25R. Rao, CSE 326

2. Right Rotation:
Adjust relevant
pointers

3. Make i the rootjk

X V ZW

i

Balance has been restored!

(Right-left case is mirror-symmetric)

Insertions in AVL Trees: Inside Case

Steps for Left-Right
Double Rotation

26R. Rao, CSE 326

AVL Tree On Board Exercise

✦ Insert 8, 1, 0, 2 in that order into following AVL tree:

4

3 6

5 7

27R. Rao, CSE 326

Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.
2. The height balancing adds no more than a constant factor to

the speed of insertion. (Why?)

Arguments against using AVL trees:

1. Difficult to program & debug; more space for height info.
2. Asymptotically faster but can be slow in practice.
3. Most large searches are done in database systems on disk and

use other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if total run

time for many consecutive operations is fast…

Pros and Cons of AVL Trees

(enter Splay Trees)

28R. Rao, CSE 326

Did someone
say spay??

29R. Rao, CSE 326

Splay trees are tree structures that:

1. Are not perfectly balanced all the time
2. Allow actual Find operations to balance the tree so that

future operations may run faster

Based on the heuristic:
If X is accessed once, it is likely to be accessed again.

- After node X is accessed, perform “splaying”
operations to bring X up to the root of the tree.

- Do this in a way that leaves the tree more balanced as
a whole.

Splay Trees

30R. Rao, CSE 326

Splaying: A Motivating Example

After Find(R)

Splay Idea: Get
R up to the root
using rotations

Initial tree After splaying with R

31R. Rao, CSE 326

• Let X be a non-root node with ≥ 2 ancestors.

• Let P be its parent node.

• Let G be its grandparent node.

P

G

X

G

P

X

G

P

X

G

P

X

Splay Tree Terminology

32R. Rao, CSE 326

1. Nodes must contain a parent pointer.

element left right parent

2. When X is accessed, apply one of six rotation operations:
• Single Rotations (X has a P but no G)

• Double Rotations (X has both a P and a G)

• zig-left, zig-right

• zig-zig-left, zig-zig-right
• zig-zag-left, zig-zag-right

Splay Tree Operations

33R. Rao, CSE 326

Splay Trees: Zig operation

✦ “Zig” is just a single rotation, as in an AVL tree

✦ Suppose R was the node that was accessed (e.g. using Find)

✦ Zig-right moves R to the top can access R faster next time

Zig-right

34R. Rao, CSE 326

Splay Trees: Zig operation

✦ Suppose Q is accessed (e.g. using Find)

✦ Zig-left moves Q to the top

Zig-left

35R. Rao, CSE 326

Splay Trees: Zig-Zig operation

✦ “Zig-Zig” consists of two single rotations of the same type
(assume R is the node that was accessed):

✦ Again, due to “zig-zig” splaying, R has bubbled to the top!

✦ Note: Parent-Grandparent rotated first.

(Zig-right) (Zig-right)

Zig Zig

36R. Rao, CSE 326

Splay Trees: Zig-Zag operation

✦ “Zig-Zag” consists of two rotations of the opposite type
(assume R is the node that was accessed):

✦ “Zig-Zag” splaying also causes R to move to the top.

(Zig-left) (Zig-right)

Zig Zag

37R. Rao, CSE 326

Splay Trees: Example

38R. Rao, CSE 326

Splay Trees: Do-It-Yourself Exercise

✦ Insert the keys 1, 2, …, 7 in that order into an empty splay
tree.

✦ What happens when you access “7”?

39R. Rao, CSE 326

Examples suggest that splaying causes tree to get balanced.
The actual analysis is rather advanced and is in Chapter 11.

Result of Analysis: Any sequence of M operations on a splay
tree of size N takes O(M log N) time.

So, the amortized running time for one operation is O(log N).

This guarantees that even if the depths of some nodes get
very large, you cannot get a long sequence of O(N) searches
because each search operation causes a rebalance.
Without splaying, total time could be O(MN).

Analysis of Splay Trees: Amortization

40R. Rao, CSE 326

Next Class:

Beyond Binary Trees: B-trees

To Do:

Finish Chapter 4 and Start Chapter 6

Homework # 2

Have a great
weekend!

