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CSE 326 Lecture 8: Getting to know AVL Trees

✦ Today’s Topics:
➭ Balanced Search Trees
➧ AVL Trees and Rotations
➧ Splay trees

✦ Covered in Chapter 4 of the text
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Recall from Last Time: AVL Trees

✦ AVL trees are height-balanced binary search trees

✦ Balance factor of a node = 
height(left subtree) - height(right subtree)

✦ An AVL tree can only have balance factors +1, 0, or –1
at every node
➭ Height of an empty subtree is defined to be -1

✦ Implementation: Store current heights in each node and 
calculate balance factors when needed from subtrees’ root 
nodes.
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Is this tree AVL?
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Is this tree AVL?
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Why AVL?

✦ Can prove: Height of an AVL tree of N nodes is always 
O(log N) (see previous lecture and textbook)

✦ Run time for accessing any node is therefore O(log N)

✦ One problem: Insert/Remove may upset AVL balance
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Insert Example
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No longer an AVL tree

Problem: Insert may cause balance factor to become 2 or –2 
for some node on the path from insertion point to root node
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Restoring Balance

✦ Idea: After Inserting the new node,
1. Back up to root updating heights along the access path
2. If Balance Factor = 2 or –2, adjust tree by rotation

around deepest such node.
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Rotating to restore Balance: A Simple Example
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Tree before insertion 
(BF = Balance Factor)

Various Cases of Insertion
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BF = ?

BF = ?

BF = 0
BF = ? 

BF = 0 

Tree after insertion
BF = 0

“Outside” Case 

BF = ?
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BF =
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Tree after insertion
BF = 0

“Inside” Case 
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Let the node that needs rebalancing be α.

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of α.
2. Insertion into right subtree of right child of α.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of α.
4. Insertion into left subtree of right child of α.

Rebalancing is performed through four separate rotation 
algorithms.

Insertions in AVL Trees
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Insertions in AVL Trees: Outside Case 
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Inserting into X
destroys the AVL 
property

Insertions in AVL Trees: Outside Case 
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Do a “right rotation”

Insertions in AVL Trees: Outside Case 
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Insertions in AVL Trees: Outside Case 

Do a “right rotation”:
1. Make j point to Y
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j
k

X Y Z

Insertions in AVL Trees: Outside Case 

AVL property has been restored!
(“Left rotation” is mirror symmetric)

Do a “right rotation”:
2. Make k point to j
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Insertions in AVL Trees: Inside Case 

Consider a valid
AVL subtree



19R. Rao, CSE 326

Inserting into Y 
destroys the
AVL property 
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Insertions in AVL Trees: Inside Case 

Does “right rotation”
restore balance?
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“Right rotation”
don’t do nothin’ 
fa dis tree…

Insertions in AVL Trees: Inside Case 
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Consider the structure
of subtree Y… j

k

X
Y

Z

Insertions: Inside Case Take 2
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Y = node i and
subtrees V and W

Insertions in AVL Trees: Inside Case 
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Insertions in AVL Trees: Inside Case 

Let’s try a left-right 
“double rotation” . . .
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Steps for Left-Right
Double Rotation

Insertions in AVL Trees: Inside Case 

1. Left Rotation:
Adjust relevant
pointers…
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2. Right Rotation:
Adjust relevant
pointers

3.  Make i the rootjk

X V ZW

i

Balance has been restored!

(Right-left case is mirror-symmetric)

Insertions in AVL Trees: Inside Case 

Steps for Left-Right
Double Rotation
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AVL Tree On Board Exercise

✦ Insert 8, 1, 0, 2 in that order into following AVL tree:
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5 7
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Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.
2. The height balancing adds no more than a constant factor to 

the speed of insertion. (Why?)

Arguments against using AVL trees:

1.  Difficult to program & debug; more space for height info.
2. Asymptotically faster but can be slow in practice.
3. Most large searches are done in database systems on disk and 

use other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if total run 

time for many consecutive operations is fast…

Pros and Cons of AVL Trees

(enter Splay Trees)
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Did someone 
say spay??
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Splay trees are tree structures that:

1. Are not perfectly balanced all the time
2. Allow actual Find operations to balance the tree so that

future operations may run faster

Based on the heuristic:
If  X is accessed once, it is likely to be accessed again.

- After node X is accessed, perform “splaying”
operations to bring X up to the root of the tree.

- Do this in a way that leaves the tree more balanced as 
a whole.

Splay Trees
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Splaying: A Motivating Example

After Find(R) 

Splay Idea: Get 
R up to the root 
using rotations

Initial tree After splaying with R



31R. Rao, CSE 326

• Let X be a non-root node with ≥ 2 ancestors.

• Let P be its parent node.

• Let G be its grandparent node.
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Splay Tree Terminology
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1. Nodes must contain a parent pointer.

element   left      right    parent

2. When X is accessed, apply one of six rotation operations:
• Single Rotations (X has a P but no G)

• Double Rotations (X has both a P and a G)

• zig-left, zig-right

• zig-zig-left, zig-zig-right
• zig-zag-left, zig-zag-right

Splay Tree Operations
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Splay Trees: Zig operation

✦ “Zig” is just a single rotation, as in an AVL tree

✦ Suppose R was the node that was accessed (e.g. using Find)

✦ Zig-right moves R to the top can access R faster next time

Zig-right
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Splay Trees: Zig operation

✦ Suppose Q is accessed (e.g. using Find)

✦ Zig-left moves Q to the top

Zig-left
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Splay Trees: Zig-Zig operation

✦ “Zig-Zig” consists of two single rotations of the same type
(assume R is the node that was accessed):

✦ Again, due to “zig-zig” splaying, R has bubbled to the top!

✦ Note: Parent-Grandparent rotated first.

(Zig-right) (Zig-right)

Zig     Zig     
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Splay Trees: Zig-Zag operation

✦ “Zig-Zag” consists of two rotations of the opposite type
(assume R is the node that was accessed):

✦ “Zig-Zag” splaying also causes R to move to the top.

(Zig-left) (Zig-right)

Zig     Zag     
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Splay Trees: Example
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Splay Trees: Do-It-Yourself Exercise

✦ Insert the keys 1, 2, …, 7 in that order into an empty splay 
tree.

✦ What happens when you access “7”?
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Examples suggest that splaying causes tree to get balanced.
The actual analysis is rather advanced and is in Chapter 11. 

Result of Analysis: Any sequence of  M operations on a splay 
tree of size N takes O(M log N) time.

So, the amortized running time for one operation is O(log N).

This guarantees that even if the depths of some nodes get 
very large, you cannot get a long sequence of O(N) searches
because each search operation causes a rebalance. 
Without splaying, total time could be O(MN).

Analysis of Splay Trees: Amortization
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Next Class:

Beyond Binary Trees: B-trees

To Do:

Finish Chapter 4 and Start Chapter 6

Homework # 2

Have a great 
weekend!


