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CSE 326 Lecture 7: More on Search Trees

✦ Today’s Topics:
➭ Lazy Operations
➭ Run Time Analysis of Binary Search Tree Operations
➭ Balanced Search Trees
➧ AVL Trees and Rotations

✦ Covered in Chapter 4 of the text
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From Last Time: Remove (Delete) Operation

✦ Removing a node containing X:
1. Find the node containing X
2. Replace it with:

If it has no children, with NULL
If it has 1 child, with that child
If it has 2 children, with the node with
the smallest value in its right subtree,
(or largest value in left subtree)

3. Recursively remove node used in 2 and 3

✦ Worst case: Recursion propagates all
the way to a leaf node – time is
O(depth of tree)
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Laziness in Data Structures

✦ A “lazy” operation is one that puts off work as much as 
possible in the hope that a future operation will make the 
current operation unnecessary

Data
Struct-ures
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Lazy Deletion

✦ Idea: Mark node as deleted; no need to reorganize tree
➭ Skip marked nodes during Find or Insert
➭ Reorganize tree only when number of marked nodes 

exceeds a percentage of real nodes (e.g. 50%)
➭ Constant time penalty only due to marked nodes – depth 

increases only by a constant amount if 50% are marked 
undeleted nodes (N nodes max N/2 marked)

✦ Modify Insert to make use of marked nodes whenever 
possible e.g. when deleted value is re-inserted

✦ Can also use lazy deletion for Lists
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Run Time Analysis of BST operations

✦ All BST operations (except MakeEmpty) are O(d), where d is 
the depth of the accessed node in the tree
➭ MakeEmpty takes O(N) for a tree with N nodes – frees all nodes

✦ We know: log N ≤ d ≤ N-1 for a binary tree with N nodes
➭ What is the best case tree? What is the worst case tree?

✦ Best Case Running Time of Insert/Remove/etc. = ? 

✦ Worst Case Running Time = ? 

✦ Average Case Running Time = ?
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The best, the worst, and the average…

✦ For a binary tree with N nodes, depth d of any node satisfies: 
log N ≤ d ≤ N-1

✦ So, best case running time of BST operations is O(log N)

✦ Worst case running time is O(N)

✦ Average case running time = O(average value of d) = O(log N)
➭ Can prove that average depth over all nodes = O(log N) if all 

insertion sequences equally likely.
➭ See Chap. 4 in textbook for proof
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Can we do better?

✦ Worst case running time of BST operations is O(N)

✦ E.g. What happens when you Insert elements in ascending 
(or descending) order?
➭ Insert 2, 4, 6, 8, 10, 12 into an empty BST

✦ Problem: Lack of “balance” – Tree becomes highly asymmetric

✦ Idea: Can we restore balance by re-arranging tree according to 
depths of left and right subtrees?
➭ Goal: Get depth down from O(N) to O(log N) 
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Idea #1: Achieving the perfect balance…

✦ First try at balancing trees: Perfect balance
➭ Re-arrange to get a complete tree after 

every operation

✦ Recall: A tree is complete if there are no 
“holes” when scanning from top to 
bottom, left to right

✦ Problem: Too expensive to re-arrange 
➭ E.g. Insert 2 in the example shown

✦ Need a looser constraint…
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Idea #2: Leave it to the professionals…

✦ Many efficient algorithms exist for balancing trees in 
order to achieve faster running times for the BST 
operations
➭Adelson-Velskii and Landis (AVL) trees (1962)
➭ Splay trees and other self-adjusting trees (1978)
➭B-trees and other multiway search trees (1972)

10R. Rao, CSE 326

AVL Trees

✦ AVL trees are height-balanced binary 
search trees

✦ Balance factor of a node = height(left 
subtree) - height(right subtree)

✦ An AVL tree can only have balance 
factors of 1, 0, or –1 at every node
➭ For every node, heights of left and 

right subtree differ by no more than 1
➭ Height of an empty subtree = -1

✦ Implementation: Store current 
heights in each node
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Which of these are AVL trees?
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AVL Trees: Examples and Non-Examples

Balance
factors
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The good news about AVL Trees

✦ Can prove: Height of an AVL tree of N 
nodes is always O(log N) 

✦ How? Can show:
➭ Height h ≤ 1.44 log(N+2)-0.328
➭ Prove using recurrence relation for 

minimum number of nodes S(h) in an 
AVL tree of height h:
S(h) = S(h-1) + S(h-2) + 1

➭ Use Fibonacci numbers to get bound 
on S(h) bound on height h

➭ See textbook for details
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The really good news about AVL Trees

✦ Can prove: Height of an AVL tree of N 
nodes is always O(log N) 

✦ All operations (e.g. Find, Remove 
using lazy deletion, etc.) on an AVL 
tree are O(log N)…

✦ …except Insert
➭Why is Insert different? 0
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The bad news about AVL Trees
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Restoring Balance in (the life of) an AVL Tree

✦ Problem: Insert may cause balance factor to become 2 or –2 
for some node on the path from insertion point to root node

✦ Idea: After Inserting the new node,
1. Back up to root updating heights along the access path
2. If Balance Factor = 2 or –2, adjust tree by rotation

around deepest such node.
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Rotating to restore Balance: A Simple Example
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Next Class:

Rotating and Splaying for Fun and Profit

To Do:

Finish Reading Chapter 4


