CSE 326 Lecture 7: More on Search Trees

- Today's Topics:
\Rightarrow Lazy Operations
\Rightarrow Run Time Analysis of Binary Search Tree Operations
\Rightarrow Balanced Search Trees
- AVL Trees and Rotations
\star Covered in Chapter 4 of the text

From Last Time: Remove (Delete) Operation

- Removing a node containing X:

1. Find the node containing X
2. Replace it with:

If it has no children, with NULL If it has 1 child, with that child If it has 2 children, with the node with the smallest value in its right subtree, (or largest value in left subtree)
3. Recursively remove node used in 2 and 3

- Worst case: Recursion propagates all the way to a leaf node - time is O (depth of tree)

Laziness in Data Structures

- A "lazy" operation is one that puts off work as much as possible in the hope that a future operation will make the current operation unnecessary

Lazy Deletion

- Idea: Mark node as deleted; no need to reorganize tree
\Rightarrow Skip marked nodes during Find or Insert
\Rightarrow Reorganize tree only when number of marked nodes exceeds a percentage of real nodes (e.g. 50%)
\Rightarrow Constant time penalty only due to marked nodes - depth increases only by a constant amount if 50% are marked undeleted nodes (N nodes $\max \mathrm{N} / 2$ marked)
\uparrow Modify Insert to make use of marked nodes whenever possible e.g. when deleted value is re-inserted
\downarrow Can also use lazy deletion for Lists

Run Time Analysis of BST operations

\downarrow All BST operations (except MakeEmpty) are $\mathrm{O}(\mathrm{d})$, where d is the depth of the accessed node in the tree
\Rightarrow MakeEmpty takes $\mathrm{O}(\mathrm{N})$ for a tree with N nodes - frees all nodes
\uparrow We know: $\log \mathrm{N} \leq \mathrm{d} \leq \mathrm{N}-1$ for a binary tree with N nodes
\Rightarrow What is the best case tree? What is the worst case tree?
\star Best Case Running Time of Insert/Remove/etc. $=$?
\star Worst Case Running Time $=$?
\star Average Case Running Time $=$?

The best, the worst, and the average...

\downarrow For a binary tree with N nodes, depth d of any node satisfies: $\log \mathrm{N} \leq \mathrm{d} \leq \mathrm{N}-1$
\downarrow So, best case running time of BST operations is $\mathbf{O}(\log \mathbf{N})$

- Worst case running time is $\mathbf{O}(\mathbf{N})$
- Average case running time $=\mathrm{O}($ average value of d$)=\mathbf{O}(\log \mathrm{N})$
\Rightarrow Can prove that average depth over all nodes $=\mathrm{O}(\log \mathrm{N})$ if all insertion sequences equally likely.
\Rightarrow See Chap. 4 in textbook for proof

Can we do better?

\downarrow Worst case running time of BST operations is $\mathbf{O}(\mathbf{N})$
\star E.g. What happens when you Insert elements in ascending (or descending) order?
\Rightarrow Insert 2, 4, 6, 8, 10, 12 into an empty BST

- Problem: Lack of "balance" - Tree becomes highly asymmetric
\downarrow Idea: Can we restore balance by re-arranging tree according to depths of left and right subtrees?
\Rightarrow Goal: Get depth down from $\mathrm{O}(\mathrm{N})$ to $\mathrm{O}(\log \mathrm{N})$

Idea \#1: Achieving the perfect balance...

\checkmark First try at balancing trees: Perfect balance
\Rightarrow Re-arrange to get a complete tree after every operation

- Recall: A tree is complete if there are no "holes" when scanning from top to bottom, left to right

Idea \#2: Leave it to the professionals...

- Many efficient algorithms exist for balancing trees in order to achieve faster running times for the BST operations
\Leftrightarrow Adelson-Velskii and Landis (AVL) trees (1962)
\Rightarrow Splay trees and other self-adjusting trees (1978)
\Rightarrow B-trees and other multiway search trees (1972)

AVL Trees

\rightarrow AVL trees are height-balanced binary search trees

- Balance factor of a node $=$ height(left subtree) - height(right subtree)
\uparrow An AVL tree can only have balance factors of 1,0 , or -1 at every node \Rightarrow For every node, heights of left and right subtree differ by no more than 1
\Rightarrow Height of an empty subtree $=-1$
\uparrow Implementation: Store current heights in each node

Which of these are AVL trees?

AVL Trees: Examples and Non-Examples

(8) 0

R. Rao, CSE 326

AVL

The good news about AVL Trees

- Can prove: Height of an AVL tree of N nodes is always $\mathrm{O}(\log \mathrm{N})$
- How? Can show:
\Rightarrow Height $\mathrm{h} \leq 1.44 \log (\mathrm{~N}+2)-0.328$
\Rightarrow Prove using recurrence relation for minimum number of nodes $S(h)$ in an
 AVL tree of height h: $\mathrm{S}(\mathrm{h})=\mathrm{S}(\mathrm{h}-1)+\mathrm{S}(\mathrm{h}-2)+1$
\Rightarrow Use Fibonacci numbers to get bound on $\mathrm{S}(\mathrm{h}) \quad$ bound on height h
\Rightarrow See textbook for details
Height $=$ $\mathrm{O}(\log \mathrm{N})$

The really good news about AVL Trees

\downarrow Can prove: Height of an AVL tree of N nodes is always $\mathrm{O}(\log \mathrm{N})$
\uparrow All operations (e.g. Find, Remove using lazy deletion, etc.) on an AVL tree are $\mathrm{O}(\log \mathrm{N}) \ldots$

- ...except Insert
\Rightarrow Why is Insert different?
Insert 3

The bad news about AVL Trees

No longer an AVL tree (i.e. not balanced anymore)

Restoring Balance in (the life of) an AVL Tree

- Problem: Insert may cause balance factor to become 2 or -2 for some node on the path from insertion point to root node
- Idea: After Inserting the new node,

1. Back up to root updating heights along the access path
2. If Balance Factor $=2$ or -2 , adjust tree by rotation around deepest such node.

Rotating to restore Balance: A Simple Example

Next Class:
Rotating and Splaying for Fun and Profit

To Do:
Finish Reading Chapter 4

