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Analyzing Algorithms

CSE 326
Data Structures
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Algorithm Analysis: Why?

• Correctness:
› Does the algorithm do what is intended?

• Performance:
› What is the running time of the algorithm?
› How much storage does it consume?

• Different algorithms may correctly solve 
a given task
› Which should I use?
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Evaluating an algorithm

Mike: My algorithm can sort 106 numbers in 3 seconds.
Bill: My algorithm can sort 106 numbers in 5 seconds.

Mike: I’ve just tested it on my new Pentium IV processor.
Bill: I remember my result from my undergraduate studies 

(19xx).

Mike: My input is a random permutation of 1..106.
Bill: My input is the sorted output, so I only need to verify that 

it is sorted.
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Program Evaluation / Complexity

* A complexity function is a function T: N N. 
T(n) is the number of operations the algorithm does 
on an input of size n.
“input” generally refers to parameters or data

* We can try to calculate at least three different things.
• Worst-case complexity
• Best-case complexity
• Average-case complexity

• Processing time is surely a bad measure!!!
• We need a ‘stable’ measure, independent of the 

implementation.
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The RAM Model of 
Computation

• Each simple operation takes 1 time step.
› E.g. elementary arithmetic operations and assignments

• Loops and subroutines are not simple operations.
• Each memory access takes one time step, and there is 

no shortage of memory.
For a given problem instance:
• Running time of an algorithm = # RAM steps. 
• Space used by an algorithm = # RAM memory cells

useful abstraction ⇒ allows us to analyze algorithms in a 
machine independent fashion.
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Why the RAM Model is 
Justified

• Most CPUs have a similar basic 
instruction set
› Similar operations take similar 

numbers of machine steps, to a 
constant factor

› As technology improves, speed up is 
generally linear (a constant factor)
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Big O Notation

• Goal :
› Be able to compare complexity function
› A stable measurement independent of the machine. 

• Way:
› ignore constant factors.

• f(n) = O(g(n)) if c⋅g(n) is upper bound on f(n)

⇔ There exist c, N, s.t. for any n ≥ N,   f(n) ≤ c⋅g(n)

Ignore 
constants

Consider 
large inputs 
(asymptotic 
behavior)
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Big O Notation

n+120
5n2

For all n ≥ 5 (N=5) 
n+120 ≤ 5n2

⇒ n+120 = O(n2)
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Ω Notation

• f(n) = Ω(g(n)) if c⋅g(n) is lower bound on f(n)
⇔ There exist c, N, s.t. for any n ≥ N,   f(n) ≥
c⋅g(n)
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Θ Notation

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n))
⇔ There exist c1, c2, N, s.t. for n ≥ N,     

c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n)
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ο Notation (“little o”)

• f(n) = ο(g(n)) if f(n) = O(g(n)) but g(n) != Ο(f(n))
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Ω, Θ Examples

Examples:
4x2+100 = O(x2) 4x2+100 ≠ Θ(x3) 
4x2+100 = Ω(x2) 4x2+100 = O(x3)
4x2+100 = Θ(x2) 4x2+100 = Ω(x)         
4x2 -100 =O(x2)           4x2 + xlogx =O(x2)
123400 = O(1)
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Growth Rates

• Even by ignoring constant factors, we can get 
an excellent idea of whether a given 
algorithm will be able to run in a reasonable 
amount of time on a problem of a given size.

• The “big O” notation and worst-case analysis 
are tools that greatly simplify our ability to 
compare the efficiency of algorithms.
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Practical Complexity
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Practical Complexity
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Big O Fact

• A polynomial of degree k is O(nk)
• Proof:

› Suppose f(n) = bknk + bk-1nk-1 + … + b1n + b0

• Let a = maxi {bi}

› f(n) ≤ ank + ank-1 + … + an + a
≤ kank ≤ cnk  (for c=ka).
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Iterative Algorithm for Sum

• Find the sum of the first num integers 
stored in an array v.  

sum(v[ ]: integer array, num: integer): integer{
temp_sum: integer ;

temp_sum := 0;
for i := 0 to num – 1 do 

temp_sum := v[i] + temp_sum;

return temp_sum;
}

Note the use of pseudocode
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Programming via Recursion

• Write a recursive function to find the 
sum of the first num integers stored in 
array v.

sum (v[ ]: integer array, num: integer): integer {

if (num = 0) then 

return 0

else

return (v[num-1] + sum(v,num-1));

}
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Pseudocode

• In the lectures algorithms will sometimes be 
presented in pseudocode.
› This is very common in the computer science 

literature
› Pseudocode is usually easily translated to real 

code.
› This is programming language independent

• Pseudocode can also be used for pencil-and-
paper homework
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Review: Induction

• Suppose
› S(k) is true for fixed constant k

• Often k = 0

› S(n) implies S(n+1) for all n >= k

• Then S(n) is true for all n >= k
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Proof By Induction

• Claim:S(n) is true for all n >= k
• Base:

› Show S(n) is true for n = k

• Inductive hypothesis:
› Assume S(n) is true for an arbitrary n

• Step:
› Show that S(n) is then true for n+1
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Induction Example:
Geometric Closed Form

• Prove a0 + a1 + … + an = (an+1 - 1)/(a - 1) for 
all a ≠ 1
› Basis: 1. show that a0 = (a0+1 - 1)/(a - 1) :

a0 = 1 = (a1 - 1)/(a - 1). 2. Show true for n=2.

› Inductive hypothesis:
• Assume a0 + a1 + … + an = (an+1 - 1)/(a - 1)

› Step (show true for n+1):
a0 + a1 + … + an+1 = a0 + a1 + … + an + an+1

= (an+1 - 1)/(a - 1) + an+1 = (an+1+1 - 1)/(a - 1)
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Program Correctness by 
Induction

• Basis Step: sum(v,0) = 0.  
• Inductive Hypothesis (n=k): Assume 

sum(v,k) correctly returns sum of first k 
elements of v, i.e. v[0]+v[1]+…+v[k-1]

• Inductive Step (n=k+1): sum(v,n) 
returns v[k]+sum(v,k) which is the sum 
of first k+1 elements of v. 
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Algorithms vs Programs

• Proving correctness of an algorithm is very 
important
› a well designed algorithm is guaranteed to work 

correctly and its performance can be estimated

• Proving correctness of a program (an 
implementation) is fraught with weird bugs
› Abstract Data Types are a way to bridge the gap 

between mathematical algorithms and programs
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Moore’s Law

• Moore’s Law: Transistor density doubles 
roughly every 18 months
› Translates into a CPU speed-up of the same 

amount
› Has been true for 20 years

• Similar “laws” have been observed in some 
other technology areas

• Question for discussion: why doesn’t Moore’s 
law save us from worrying about efficiency?


