Analyzing Algorithms

CSE 326
Data Structures

Algorithm Analysis: Why?

» Correctness:
> Does the algorithm do what is intended?
» Performance:
» What is the running time of the algorithm?
» How much storage does it consume?
« Different algorithms may correctly solve
a given task
> Which should | use?
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Evaluating an algorithm

Mike: My algorithm can sort 10° numbers in 3 seconds.
Bill: My algorithm can sort 106 numbers in 5 seconds.

Mike: I've just tested it on my new Pentium IV processor.

Bill: I remember my result from my undergraduate studies
(19xx).

Mike: My input is a random permutation of 1..106.

Bill: My input is the sorted output, so | only need to verify that
it is sorted.
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Program Evaluation / Complexity

* Processing time is surely a bad measure!!!

* We need a ‘stable’ measure, independent of the
implementation.

* A complexity function is a function T: N N.

T(n) is the number of operations the algorithm does
on an input of size n.

“input” generally refers to parameters or data
*We can try to calculate at least three different things.
» Worst-case complexity
» Best-case complexity
s2Av@rage-case complexity




The RAM Model of
Computation

+ Each simple operation takes 1 time step.
> E.g. elementary arithmetic operations and assignments
* Loops and subroutines are not simple operations.

+ Each memory access takes one time step, and there is
no shortage of memory.

For a given problem instance:
* Running time of an algorithm = # RAM steps.
» Space used by an algorithm = # RAM memory cells

useful abstraction = allows us to analyze algorithms in a
machine independent fashion.
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Why the RAM Model is
Justified

* Most CPUs have a similar basic
instruction set
» Similar operations take similar
numbers of machine steps, to a
constant factor
» As technology improves, speed up is
generally linear (a constant factor)
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Big O Notation

+ Goal:

> Be able to compare complexity function

> A stable measurement independent of the machine.
+ Way:

> ignore constant factors.
« f(n) = O(g(n)) if c-g(n) is upper bound on f(n)

< There existc, N, s.t. foranyn>N, f(n) <c-g(n)

) A
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Big O Notation

n+120

For all n>5 (N=5)
n+120 < 5n?

6/22/2004 = n+120 = O(n?)




Q Notation

» f(n) = Q(g(n)) if c-g(n) is lower bound on f(n)
< There existc, N, s.t. foranyn>N, f(n)2>
c-g(n)
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® Notation

+ f(n) = ©(g(n)) if f(n) = O(g(n)) and f(n) = Q(g(n))

< There exist ¢, ¢,, N, s.t.forn>N,
cy-g(n) < f(n) <c,-g(n)
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o Notation (“little 0”)

» f(n) = o(g(n)) if f(n) = O(g(n)) but g(n) != O(f(n))
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Q, © Examples

Examples:
4x2+100 = O(x?)
4x2+100 = Q(x?)
4x2+100 = O(x?)
4x2-100 =0O(x?)
123400 = O(1)
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4x2+100 = O(x3)
4x2+100 = O(x3)
4x2+100 = Q(x)
4x2 + xlogx =O(x?)




Growth Rates

» Even by ignoring constant factors, we can get
an excellent idea of whether a given
algorithm will be able to run in a reasonable
amount of time on a problem of a given size.

» The “big O” notation and worst-case analysis
are tools that greatly simplify our ability to
compare the efficiency of algorithms.
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Practical Complexity
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Practical Complexity

Practical Complexity
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Practical Complexity
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Big O Fact

« A polynomial of degree k is O(n¥)
* Proof:
> Suppose f(n) = bnk + b nk1+ ..+ byn + b,
» Let a =max; {b}
y f(n) <ank+ank'+ ... +an+a
<kank<cnk (for c=ka).
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Iterative Algorithm for Sum

* Find the sum of the first num integers
stored in an array v.

sum(v[ ]: integer array, num: integer): integer{
temp_ sum: integer ;
temp sum := 0;
for i := 0 to num - 1 do
temp_sum := v[i] + temp_sum;
return temp_sum;
}

Note the use of pseudocode

6/22/2004 19

Programming via Recursion

» Write a recursive function to find the
sum of the first num integers stored in
array v.

sum (v[ 1: integer array, num: integer): integer {
if (num = 0) then
return 0
else
return (v[num-1] + sum(v,num-1));

}
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Pseudocode

* In the lectures algorithms will sometimes be
presented in pseudocode.

> This is very common in the computer science
literature

> Pseudocode is usually easily translated to real
code.

» This is programming language independent
» Pseudocode can also be used for pencil-and-
paper homework
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Review: Induction

» Suppose
» S(k) is true for fixed constant k
* Oftenk =0

» S(n) implies S(n+1) for all n >=k
* Then S(n) is true for all n >=k
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Proof By Induction

Claim:S(n) is true for all n >=k
 Base:

> Show S(n) is true for n = k
* Inductive hypothesis:

> Assume S(n) is true for an arbitrary n
» Step:
> Show that S(n) is then true for n+1
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Induction Example:
Geometric Closed Form

* Provea’+a'+ ... +an=(@""-1)/(a-1)for
alla#1
» Basis: 1. show that a® = (a®*' - 1)/(a- 1) :
a®=1=(a'-1)/(a- 1). 2. Show true for n=2.
» Inductive hypothesis:
* Assumea’+al+ .. +an=(am"-1)/(a-1)
» Step (show true for n+1):
al+al+ . +amt=al+al+ . +an+an!
=@ - Ni(a-1)+am = (@ - 1)/(a- 1)
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Program Correctness by
Induction

» Basis Step: sum(v,0) = 0.

* Inductive Hypothesis (n=k): Assume
sum(v,k) correctly returns sum of first k
elements of v, i.e. v[0] +v[1] +..+v [k-1]

* Inductive Step (n=k+1): sum(v,n)
returns v [k] +sum (v, k) which is the sum
of first k+1 elements of v.
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Algorithms vs Programs

» Proving correctness of an algorithm is very
important
> a well designed algorithm is guaranteed to work
correctly and its performance can be estimated
* Proving correctness of a program (an
implementation) is fraught with weird bugs

» Abstract Data Types are a way to bridge the gap
between mathematical algorithms and programs
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Moore’s Law

* Moore’s Law: Transistor density doubles
roughly every 18 months

> Translates into a CPU speed-up of the same
amount

> Has been true for 20 years
+ Similar “laws” have been observed in some
other technology areas
* Question for discussion: why doesn’t Moore’s
law save us from worrying about efficiency?
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