
1

Analyzing Algorithms

CSE 326
Data Structures

6/22/2004 2

Algorithm Analysis: Why?

• Correctness:
› Does the algorithm do what is intended?

• Performance:
› What is the running time of the algorithm?
› How much storage does it consume?

• Different algorithms may correctly solve
a given task
› Which should I use?

6/22/2004 3

Evaluating an algorithm

Mike: My algorithm can sort 106 numbers in 3 seconds.
Bill: My algorithm can sort 106 numbers in 5 seconds.

Mike: I’ve just tested it on my new Pentium IV processor.
Bill: I remember my result from my undergraduate studies

(19xx).

Mike: My input is a random permutation of 1..106.
Bill: My input is the sorted output, so I only need to verify that

it is sorted.

6/22/2004 4

Program Evaluation / Complexity

* A complexity function is a function T: N N.
T(n) is the number of operations the algorithm does
on an input of size n.
“input” generally refers to parameters or data

* We can try to calculate at least three different things.
• Worst-case complexity
• Best-case complexity
• Average-case complexity

• Processing time is surely a bad measure!!!
• We need a ‘stable’ measure, independent of the

implementation.

2

6/22/2004 5

The RAM Model of
Computation

• Each simple operation takes 1 time step.
› E.g. elementary arithmetic operations and assignments

• Loops and subroutines are not simple operations.
• Each memory access takes one time step, and there is

no shortage of memory.
For a given problem instance:
• Running time of an algorithm = # RAM steps.
• Space used by an algorithm = # RAM memory cells

useful abstraction ⇒ allows us to analyze algorithms in a
machine independent fashion.

6/22/2004 6

Why the RAM Model is
Justified

• Most CPUs have a similar basic
instruction set
› Similar operations take similar

numbers of machine steps, to a
constant factor

› As technology improves, speed up is
generally linear (a constant factor)

6/22/2004 7

Big O Notation

• Goal :
› Be able to compare complexity function
› A stable measurement independent of the machine.

• Way:
› ignore constant factors.

• f(n) = O(g(n)) if c⋅g(n) is upper bound on f(n)

⇔ There exist c, N, s.t. for any n ≥ N, f(n) ≤ c⋅g(n)

Ignore
constants

Consider
large inputs
(asymptotic
behavior)

6/22/2004 8

Big O Notation

n+120
5n2

For all n ≥ 5 (N=5)
n+120 ≤ 5n2

⇒ n+120 = O(n2)

3

6/22/2004 9

Ω Notation

• f(n) = Ω(g(n)) if c⋅g(n) is lower bound on f(n)
⇔ There exist c, N, s.t. for any n ≥ N, f(n) ≥
c⋅g(n)

6/22/2004 10

Θ Notation

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n))
⇔ There exist c1, c2, N, s.t. for n ≥ N,

c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n)

6/22/2004 11

ο Notation (“little o”)

• f(n) = ο(g(n)) if f(n) = O(g(n)) but g(n) != Ο(f(n))

6/22/2004 12

Ω, Θ Examples

Examples:
4x2+100 = O(x2) 4x2+100 ≠ Θ(x3)
4x2+100 = Ω(x2) 4x2+100 = O(x3)
4x2+100 = Θ(x2) 4x2+100 = Ω(x)
4x2 -100 =O(x2) 4x2 + xlogx =O(x2)
123400 = O(1)

4

6/22/2004 13

Growth Rates

• Even by ignoring constant factors, we can get
an excellent idea of whether a given
algorithm will be able to run in a reasonable
amount of time on a problem of a given size.

• The “big O” notation and worst-case analysis
are tools that greatly simplify our ability to
compare the efficiency of algorithms.

6/22/2004 14

Practical Complexity

0

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

6/22/2004 15

Practical Complexity

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

6/22/2004 16

Practical Complexity

0

1000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

5

6/22/2004 17

Practical Complexity

0

1000

2000

3000

4000

5000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

6/22/2004 18

Big O Fact

• A polynomial of degree k is O(nk)
• Proof:

› Suppose f(n) = bknk + bk-1nk-1 + … + b1n + b0

• Let a = maxi {bi}

› f(n) ≤ ank + ank-1 + … + an + a
≤ kank ≤ cnk (for c=ka).

6/22/2004 19

Iterative Algorithm for Sum

• Find the sum of the first num integers
stored in an array v.

sum(v[]: integer array, num: integer): integer{
temp_sum: integer ;

temp_sum := 0;
for i := 0 to num – 1 do

temp_sum := v[i] + temp_sum;

return temp_sum;
}

Note the use of pseudocode

6/22/2004 20

Programming via Recursion

• Write a recursive function to find the
sum of the first num integers stored in
array v.

sum (v[]: integer array, num: integer): integer {

if (num = 0) then

return 0

else

return (v[num-1] + sum(v,num-1));

}

6

6/22/2004 21

Pseudocode

• In the lectures algorithms will sometimes be
presented in pseudocode.
› This is very common in the computer science

literature
› Pseudocode is usually easily translated to real

code.
› This is programming language independent

• Pseudocode can also be used for pencil-and-
paper homework

6/22/2004 22

Review: Induction

• Suppose
› S(k) is true for fixed constant k

• Often k = 0

› S(n) implies S(n+1) for all n >= k

• Then S(n) is true for all n >= k

6/22/2004 23

Proof By Induction

• Claim:S(n) is true for all n >= k
• Base:

› Show S(n) is true for n = k

• Inductive hypothesis:
› Assume S(n) is true for an arbitrary n

• Step:
› Show that S(n) is then true for n+1

6/22/2004 24

Induction Example:
Geometric Closed Form

• Prove a0 + a1 + … + an = (an+1 - 1)/(a - 1) for
all a ≠ 1
› Basis: 1. show that a0 = (a0+1 - 1)/(a - 1) :

a0 = 1 = (a1 - 1)/(a - 1). 2. Show true for n=2.

› Inductive hypothesis:
• Assume a0 + a1 + … + an = (an+1 - 1)/(a - 1)

› Step (show true for n+1):
a0 + a1 + … + an+1 = a0 + a1 + … + an + an+1

= (an+1 - 1)/(a - 1) + an+1 = (an+1+1 - 1)/(a - 1)

7

6/22/2004 25

Program Correctness by
Induction

• Basis Step: sum(v,0) = 0.
• Inductive Hypothesis (n=k): Assume

sum(v,k) correctly returns sum of first k
elements of v, i.e. v[0]+v[1]+…+v[k-1]

• Inductive Step (n=k+1): sum(v,n)
returns v[k]+sum(v,k) which is the sum
of first k+1 elements of v.

6/22/2004 26

Algorithms vs Programs

• Proving correctness of an algorithm is very
important
› a well designed algorithm is guaranteed to work

correctly and its performance can be estimated

• Proving correctness of a program (an
implementation) is fraught with weird bugs
› Abstract Data Types are a way to bridge the gap

between mathematical algorithms and programs

6/22/2004 27

Moore’s Law

• Moore’s Law: Transistor density doubles
roughly every 18 months
› Translates into a CPU speed-up of the same

amount
› Has been true for 20 years

• Similar “laws” have been observed in some
other technology areas

• Question for discussion: why doesn’t Moore’s
law save us from worrying about efficiency?

