

Algorithm Analysis: Why?

- Correctness:
, Does the algorithm do what is intended?
- Performance:
, What is the running time of the algorithm?
, How much storage does it consume?
- Different algorithms may correctly solve a given task
, Which should I use?

Evaluating an algorithm

Mike: My algorithm can sort 10^{6} numbers in 3 seconds. Bill: My algorithm can sort 10^{6} numbers in 5 seconds.

Mike: I've just tested it on my new Pentium IV processor. Bill: I remember my result from my undergraduate studies (19xx).

Mike: My input is a random permutation of $1 . .10^{6}$. Bill: My input is the sorted output, so I only need to verify that it is sorted.

6/22/2004

Program Evaluation / Complexity

- Processing time is surely a bad measure!!!
- We need a 'stable' measure, independent of the implementation.
* A complexity function is a function T : $\mathrm{N} \quad \mathrm{N}$.
$T(n)$ is the number of operations the algorithm does on an input of size n.
"input" generally refers to parameters or data
* We can try to calculate at least three different things.
- Worst-case complexity
- Best-case complexity
-6/2A2derage-case complexity

Why the RAM Model is Justified

- Most CPUs have a similar basic instruction set
, Similar operations take similar numbers of machine steps, to a constant factor
, As technology improves, speed up is generally linear (a constant factor)

Big O Notation

- Goal :
, Be able to compare complexity function
, A stable measurement independent of the machine.
- Way:
, ignore constant factors.
- $f(n)=O(g(n))$ if $c \cdot g(n)$ is upper bound on $f(n)$

Big O Notation
\Leftrightarrow There exist c, N, s.t. for any $n \geq N, f(n) \leq c \cdot g(n)$

\uparrow		
Consider large inputs (asymptotic behavior)	Ignore constants	

Ω Notation

- $f(n)=\Omega(g(n))$ if $c \cdot g(n)$ is lower bound on $f(n)$ \Leftrightarrow There exist c, N, s.t. for any $n \geq N, f(n) \geq$ $\mathrm{c} \cdot \mathrm{g}(\mathrm{n})$
o Notation ("little o")
$f(n)=o(g(n))$ if $f(n)=O(g(n))$ but $g(n)!=O(f(n))$

Ω, Θ Examples

Examples:

$$
\begin{array}{l|l}
4 x^{2}+100=O\left(x^{2}\right) & 4 x^{2}+100 \neq \Theta\left(x^{3}\right) \\
4 x^{2}+100=\Omega\left(x^{2}\right) & 4 x^{2}+100=O\left(x^{3}\right) \\
4 x^{2}+100=\Theta\left(x^{2}\right) & 4 x^{2}+100=\Omega(x) \\
4 x^{2}-100=O\left(x^{2}\right) & 4 x^{2}+x \log x=O\left(x^{2}\right) \\
123400=O(1) &
\end{array}
$$

Growth Rates

- Even by ignoring constant factors, we can get an excellent idea of whether a given algorithm will be able to run in a reasonable amount of time on a problem of a given size.
- The "big O" notation and worst-case analysis are tools that greatly simplify our ability to compare the efficiency of algorithms.

Practical Complexity

Big O Fact

- A polynomial of degree k is $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$
- Proof:
, Suppose $f(n)=b_{k} n^{k}+b_{k-1} n^{k-1}+\ldots+b_{1} n+b_{0}$
- Let $a=\max _{i}\left\{\mathrm{~b}_{\mathrm{i}}\right\}$
, $\mathrm{f}(\mathrm{n}) \leq \mathrm{an}^{\mathrm{k}}+\mathrm{an} \mathrm{n}^{\mathrm{k}-1}+\ldots+\mathrm{an}+\mathrm{a}$ $\leq \mathrm{kan}^{\mathrm{k}} \leq \mathrm{cn}^{\mathrm{k}}$ (for c=ka).

Iterative Algorithm for Sum

- Find the sum of the first num integers stored in an array v.

```
sum(v[ ]: integer array, num: integer): integer{
    temp_sum: integer ;
    temp_sum := 0;
    for i := 0 to num - 1 do
        temp_sum := v[i] + temp_sum;
    return temp_sum;
}
    Note the use of pseudocode
6/22/2004

\section*{Programming via Recursion}
- Write a recursive function to find the sum of the first num integers stored in array v .
sum (v[ ]: integer array, num: integer) : integer \{
if (num \(=0\) ) then
return 0
else
return (v[num-1] + sum (v,num-1));
\}

6/22/2004
20

\section*{Pseudocode}
- In the lectures algorithms will sometimes be presented in pseudocode.
, This is very common in the computer science literature
, Pseudocode is usually easily translated to real code.
, This is programming language independent
- Pseudocode can also be used for pencil-andpaper homework

6/22/2004
, Show that \(\mathrm{S}(\mathrm{n})\) is then true for \(\mathrm{n}+1\)

6/22/2004

\section*{Proof By Induction}
- Claim: \(\mathrm{S}(\mathrm{n})\) is true for all \(\mathrm{n}>=\mathrm{k}\)
- Base:
, Show \(S(n)\) is true for \(n=k\)
- Inductive hypothesis:
, Assume \(S(n)\) is true for an arbitrary \(n\)
- Step:

\section*{Review: Induction}
- Suppose
, \(S(k)\) is true for fixed constant \(k\)
- Often k = 0
, \(S(n)\) implies \(S(n+1)\) for all \(n>=k\)
- Then \(S(n)\) is true for all \(n>=k\)

\section*{Induction Example:}
- Prove \(a^{0}+a^{1}+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1)\) for all \(\mathrm{a} \neq 1\)
, Basis: 1. show that \(a^{0}=\left(a^{0+1}-1\right) /(a-1)\) : \(a^{0}=1=\left(a^{1}-1\right) /(a-1) .2\). Show true for \(n=2\).
, Inductive hypothesis:
- Assume \(a^{0}+a^{1}+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1)\)
, Step (show true for \(\mathrm{n}+1\) ): \(a^{0}+a^{1}+\ldots+a^{n+1}=a^{0}+a^{1}+\ldots+a^{n}+a^{n+1}\) \(=\left(a^{n+1}-1\right) /(a-1)+a^{n+1}=\left(a^{n+1+1}-1\right) /(a-1)\)

\section*{Program Correctness by Induction}
- Basis Step: sum \((\mathrm{v}, 0)=0\).
- Inductive Hypothesis ( \(\mathbf{n}=\mathbf{k}\) ): Assume sum( \(\mathrm{v}, \mathrm{k}\) ) correctly returns sum of first k elements of v , i.e. \(\mathrm{v}[0]+\mathrm{v}[1]+\ldots+\mathrm{v}[\mathrm{k}-1]\)
- Inductive Step ( \(\mathbf{n}=\mathrm{k}+1\) ): sum( \(\mathrm{v}, \mathrm{n}\) ) returns \(\mathrm{v}[\mathrm{k}]+\operatorname{sum}(\mathrm{v}, \mathrm{k})\) which is the sum of first \(\mathrm{k}+1\) elements of v .

\section*{Moore's Law}
- Moore's Law: Transistor density doubles roughly every 18 months
, Translates into a CPU speed-up of the same amount
, Has been true for 20 years
- Similar "laws" have been observed in some other technology areas
- Question for discussion: why doesn't Moore's law save us from worrying about efficiency?

6/22/2004

\section*{Algorithms vs Programs}
- Proving correctness of an algorithm is very important
, a well designed algorithm is guaranteed to work correctly and its performance can be estimated
- Proving correctness of a program (an implementation) is fraught with weird bugs
, Abstract Data Types are a way to bridge the gap between mathematical algorithms and programs```

