
Binomial Queues

CSE 326
Data Structures

Unit 9

Reading: Section 6.8

2

Merging heaps

• Binary Heap has limited (fast) functionality
› FindMin, DeleteMin and Insert only
› does not support fast merges of two heaps

• For some applications, the items arrive in
prioritized clumps, rather than individually

• Is there somewhere in the heap design that
we can give up a little performance so that we
can gain faster merge capability?

3

Binomial Queues

• Binomial Queues are designed to be
merged quickly with one another

• Using pointer-based design we can
merge large numbers of nodes at once
by changing a small number of pointers

• More overhead than Binary Heap, but
the flexibility is needed for improved
merging speed

4

Worst Case Run Times

Insert

FindMin

DeleteMin

Merge

Θ(log N)

Θ(1)

Θ(N)

Θ(log N)

Binary Heap

Θ(log N)

Θ(log N)

Θ(log N)

Θ(log N)

Binomial Queue

5

Binomial Queues

• Binomial queues give up O(1) FindMin
performance in order to provide O(log N) merge
performance

• A binomial queue is a collection (or forest) of
heap-ordered trees
› Not just one tree, but a collection of trees!
› Each tree has a defined structure and capacity
› Each tree has the familiar heap-order property

6

Binomial Queue Building Blocks

B0B1B2B3B4

depth

number of elements

4

24 = 16

3

23 = 8

2

22 = 4

1

21 = 2

0

20 = 1

7

Structure Property

• Each tree contains two
copies of the previous tree
› the second copy is attached at

the root of the first copy

• The number of nodes in a
tree of depth d is exactly 2d

B0B1B2

depth

number of elements

2

22 = 4

1

21 = 2

0

20 = 1

8

Powers of 2 (one more time)

• Any number N can be represented in
base 2:
› A base 2 value identifies the powers of 2

that are to be included

2
0

=

1
1
0

2
1

=

2
1
0

2
2

=

4
1
0

2
3

=

8
1
0

Decimal10

1 1 3

1 0 0 4

1 0 1 13

ini

i ia 2
1

0�
−=

=

1

9

Numbers of nodes

• Any number of entries in the binomial
queue can be stored in a forest of
binomial trees

• Each tree holds the number of nodes
appropriate to its depth, i.e., 2d nodes

• So the structure of a forest of binomial
trees can be characterized with a single
binary number
› 1012 → 1·22 + 0·21 + 1·20 = 5 nodes

Structure Examples
4

8

N=210=102 21 = 2

94

8

21 = 2 20 = 1

94

85

7

22 = 4 21 = 2 20 = 1

4

85

7

22 = 4

N=310=112

N=410=1002

N=510=1012

22 = 4

22 = 4

20 = 1 20 = 121 = 2

11

What is a merge?

• There is a direct correlation between
› the number of nodes in the tree
› the representation of that number in base 2
› and the actual structure of the tree

• When we merge two queues of sizes N1 and
N2, the number of nodes in the new queue is
the sum of N1+N2

• We can use that fact to help see how fast
merges can be accomplished

4

8

N=210=102 21 = 2

94

8

21 = 2 20 = 1N=310=112

22 = 4

22 = 4

20 = 1

N=110=12 21 = 222 = 4 20 = 1

9

Example 1.

Merge BQ.1 and
BQ.2

Easy Case.

There are no
comparisons and
there is no
restructuring.

BQ.1

+ BQ.2

= BQ.3

4

6

N=210=102 21 = 2

21 = 2 20 = 1N=410=1002

22 = 4

22 = 4

20 = 1

N=210=102 21 = 222 = 4 20 = 1

Example 2.

Merge BQ.1 and BQ.2

This is an add with a
carry out.

It is accomplished with
one comparison and
one pointer change:
O(1)

BQ.1

+ BQ.2

= BQ.3

1

3

1

34

6

4

6

N=310=112 21 = 2

21 = 2 20 = 1N=210=102

22 = 4

22 = 4

20 = 1

N=310=112 21 = 222 = 4 20 = 1
Example 3.

Merge BQ.1 and BQ.2

Part 1 - Form the
carry.

BQ.1

+ BQ.2

= carry

1

3

7

8

7

8

4

6

N=310=112 21 = 2

21 = 2 20 = 1N=610=1102

22 = 4

22 = 4

20 = 1

N=310=112 21 = 222 = 4 20 = 1

Example 3.

Part 2 - Add the existing
values and the carry.

+ BQ.1

+ BQ.2

= BQ.3

1

3

7

8

7

8

21 = 2 20 = 1N=210=102 22 = 4

carry

7

8

1

34

6

16

Merge Algorithm

• Just like binary addition algorithm
• Assume trees X0,…,Xn and Y0,…,Yn are

binomial queues
› Xi and Yi are of type Bi or null

C0 := null; //initial carry is null//
for i = 0 to n do
combine Xi,Yi, and Ci to form Zi and new Ci+1

Zn+1 := Cn+1

17

Exercise

94

8

21 = 2 20 = 1

12

107

12

22 = 4 21 = 2 20 = 1N=310=112 N=710=111222 = 4

13

15

18

O(log N) time to Merge

• For N keys there are at most �log2 N�
trees in a binomial forest.

• Each merge operation only looks at the
root of each tree.

• Total time to merge is O(log N).

19

Insert

• Create a single node queue B0 with
the new item and merge with
existing queue

• O(log N) time

20

DeleteMin

1. Assume we have a binomial forest X0,…,Xm

2. Find tree Xk with the smallest root
3. Remove Xk from the queue

4. Remove root of Xk (return this value)
› This yields a binomial forest Y0, Y1, …,Yk-1.

5. Merge this new queue with remainder of the
original (from step 3)

• Total time = O(log N)

21

Implementation

• Binomial forest as an array of multiway trees
› FirstChild, Sibling pointers

0 1 2 3 4 5 6 7

5
2

9

1

107

12

4

813

15

5
2

9

1

4 7 10

1213 8

15

22

DeleteMin Example

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

5 2

9

Remove min5 2

9

1

4 7 10

1213 8

15

4 7 10

1213 8

15

1 Return this

FindMin

23

0 1 2 3 4 5 6 7

5 2

9

0 1 2 3 4 5 6 7

5 2

9

0 1 2 3 4 5 6 7

10 7 4

12 13 8

15

New forest

Old forest

4 7 10

1213 8

15

24

0 1 2 3 4 5 6 7

5 2

9

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Merge
5

10

10 7 4

12 13 8

15

2

4 7 9

1213 8

15

25

Why Binomial?

B0B1B2B3B4

tree depth d

nodes at depth k

4

1, 4, 6, 4, 1

3

1, 3, 3, 1

2

1, 2, 1

1

1, 1

0

1

!)!(

!

kkd

d

k

d

−
=��

�

�
��
�

	

26

Other Priority Queues

• Leftist Heaps
› O(log N) time for insert, deletemin, merge

› The idea is to have the left part of the heap
be long and the right part short, and to
perform most operations on the left part.

• Skew Heaps (“splaying leftist heaps”)

› O(log N) amortized time for insert,
deletemin, merge

27

Exercise Solution

94

8

12

107

12

13

15
+

1

9

2

107

12

4

813

15

