
Binomial Queues

CSE 326
Data Structures

Unit 9

Reading: Section 6.8
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Merging heaps

• Binary Heap has limited (fast) functionality
› FindMin, DeleteMin and Insert only
› does not support fast merges of two heaps

• For some applications, the items arrive in 
prioritized clumps, rather than individually

• Is there somewhere in the heap design that 
we can give up a little performance so that we 
can gain faster merge capability?
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Binomial Queues

• Binomial Queues are designed to be 
merged quickly with one another

• Using pointer-based design we can 
merge large numbers of nodes at once 
by changing a small number of pointers

• More overhead than Binary Heap, but 
the flexibility is needed for improved 
merging speed
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Binomial Queues

• Binomial queues give up O(1) FindMin
performance in order to provide O(log N) merge 
performance

• A binomial queue is a collection (or forest) of 
heap-ordered trees
› Not just one tree, but a collection of trees!
› Each tree has a defined structure and capacity
› Each tree has the familiar heap-order property
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Binomial Queue Building Blocks
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Structure Property

• Each tree contains two 
copies of the previous tree
› the second copy is attached at 

the root of the first copy

• The number of nodes in a 
tree of depth d is exactly 2d
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Powers of 2 (one more time)

• Any number N can be represented in 
base 2: 
› A base 2 value identifies the powers of 2 

that are to be included
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Numbers of nodes

• Any number of entries in the binomial 
queue can be stored in a forest of 
binomial trees

• Each tree holds the number of nodes 
appropriate to its depth, i.e., 2d nodes

• So the structure of a forest of binomial 
trees can be characterized with a single 
binary number
› 1012 → 1·22 + 0·21 + 1·20 = 5 nodes

Structure Examples
4
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What is a merge?

• There is a direct correlation between
› the number of nodes in the tree
› the representation of that number in base 2
› and the actual structure of the tree

• When we merge two queues of sizes N1 and 
N2, the number of nodes in the new queue is 
the sum of N1+N2

• We can use that fact to help see how fast 
merges can be accomplished
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Example 1.

Merge BQ.1 and 
BQ.2

Easy Case.

There are no 
comparisons and 
there is no 
restructuring.

BQ.1

+ BQ.2

= BQ.3
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Example 2.

Merge BQ.1 and BQ.2

This is an add with a 
carry out.  

It is accomplished with 
one comparison and 
one pointer change:  
O(1)

BQ.1

+ BQ.2

= BQ.3
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Example 3.

Merge BQ.1 and BQ.2

Part 1 - Form the 
carry.

BQ.1

+ BQ.2

= carry
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Example 3.

Part 2 - Add the existing 
values and the carry.
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Merge Algorithm

• Just like binary addition algorithm
• Assume trees X0,…,Xn and Y0,…,Yn are 

binomial queues 
› Xi and Yi are of type Bi or null

C0 := null; //initial carry is null//
for i = 0 to n do
combine Xi,Yi, and Ci to form Zi and new Ci+1

Zn+1 := Cn+1
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Exercise
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O(log N) time to Merge

• For N keys there are at most �log2 N�
trees in a binomial forest.

• Each merge operation only looks at the 
root of each tree.

• Total time to merge is O(log N).
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Insert

• Create a single node queue B0 with 
the new item and merge with 
existing queue

• O(log N) time
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DeleteMin

1. Assume we have a binomial forest X0,…,Xm

2. Find tree Xk with the smallest root 
3. Remove Xk from the queue 

4. Remove root of Xk (return this value) 
› This yields a binomial forest Y0, Y1, …,Yk-1.  

5. Merge this new queue with remainder of the 
original (from step 3)

• Total time = O(log N)
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Implementation

• Binomial forest as an array of multiway trees
› FirstChild, Sibling pointers
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DeleteMin Example
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FindMin
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New forest  

Old forest  
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Why Binomial?
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Other Priority Queues

• Leftist Heaps
› O(log N) time for insert, deletemin, merge

› The idea is to have the left part of the heap 
be long and the right part short, and to 
perform most operations on the left part.

• Skew Heaps (“splaying leftist heaps”)

› O(log N) amortized time for insert, 
deletemin, merge
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Exercise Solution
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