Binomial Queues

CSE 326

Data Structures
Unit 9

Reading: Section 6.8

Merging heaps

- Binary Heap has limited (fast) functionality
, FindMin, DeleteMin and Insert only
, does not support fast merges of two heaps
- For some applications, the items arrive in prioritized clumps, rather than individually
- Is there somewhere in the heap design that we can give up a little performance so that we can gain faster merge capability?

Binomial Queues

- Binomial Queues are designed to be merged quickly with one another
- Using pointer-based design we can merge large numbers of nodes at once by changing a small number of pointers
- More overhead than Binary Heap, but the flexibility is needed for improved merging speed

Worst Case Run Times

Binomial Queues

- Binomial queues give up O(1) FindMin performance in order to provide $\mathrm{O}(\log \mathrm{N})$ merge performance
- A binomial queue is a collection (or forest) of heap-ordered trees
, Not just one tree, but a collection of trees!
, Each tree has a defined structure and capacity
, Each tree has the familiar heap-order property

5

Binomial Queue Building Blocks

6

Structure Property

- Each tree contains two copies of the previous tree
, the second copy is attached at the root of the first copy
- The number of nodes in a tree of depth d is exactly 2^{d}

depth	2		
number of elements	$2^{2}=4$	$2^{1}=2$	0

Powers of 2 (one more time)

- Any number N can be represented in base 2: $\sum_{i=0}^{i=n-1} a_{i} 2^{i}$
, A base 2 value identifies the powers of 2 that are to be included

- ${ }^{\circ}$	8	$\begin{aligned} & \circ \\ & \text { N } \\ & \text { II } \end{aligned}$		
$\stackrel{\sim}{N}$	N	$\stackrel{\rightharpoonup}{N}$	$\stackrel{\sim}{\sim}$	Decimal ${ }_{10}$
		1	1	3
	1	0	0	4
1	1	0	1	13

Numbers of nodes

- Any number of entries in the binomial queue can be stored in a forest of binomial trees
- Each tree holds the number of nodes appropriate to its depth, i.e., $2^{\text {d }}$ nodes
- So the structure of a forest of binomial trees can be characterized with a single binary number
, $101_{2} \rightarrow 1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=5$ nodes

What is a merge?

- There is a direct correlation between
, the number of nodes in the tree
, the representation of that number in base 2
, and the actual structure of the tree
- When we merge two queues of sizes N_{1} and N_{2}, the number of nodes in the new queue is the sum of $N_{1}+N_{2}$
- We can use that fact to help see how fast merges can be accomplished

Structure Examples

Example 1.
Merge BQ. 1 and BQ. 2

Easy Case.
There are no comparisons and there is no restructuring.

Example 2.
Merge BQ. 1 and BQ. 2
This is an add with a carry out.

It is accomplished with one comparison and one pointer change: $\mathrm{O}(1)$

Part 2 - Add the existing

Merge Algorithm

- Just like binary addition algorithm
- Assume trees $\mathrm{X}_{0}, \ldots, \mathrm{X}_{\mathrm{n}}$ and $\mathrm{Y}_{0}, \ldots, \mathrm{Y}_{\mathrm{n}}$ are binomial queues

```
, }\mp@subsup{X}{i}{}\mathrm{ and }\mp@subsup{Y}{i}{}\mathrm{ are of type Bi
Co := null; //initial carry is null//
for i = 0 to n do
    combine }\mp@subsup{X}{i}{},\mp@subsup{Y}{i}{},\mathrm{ and }\mp@subsup{C}{i}{}\mathrm{ to form }\mp@subsup{Z}{i}{}\mathrm{ and new }\mp@subsup{C}{i+1}{
Z
```


Exercise

Insert

- Create a single node queue B_{0} with the new item and merge with existing queue
- $O(\log N)$ time

O(log N) time to Merge

- For N keys there are at most $\left\lceil\log _{2} N\right\rceil$ trees in a binomial forest.
- Each merge operation only looks at the root of each tree.
- Total time to merge is $\mathrm{O}(\log \mathrm{N})$.

DeleteMin

1. Assume we have a binomial forest X_{0}, \ldots, X_{m}
2. Find tree X_{k} with the smallest root
3. Remove X_{k} from the queue
4. Remove root of X_{k} (return this value)
, This yields a binomial forest $\mathrm{Y}_{0}, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{k}-1}$.
5. Merge this new queue with remainder of the original (from step 3)

- Total time $=\mathrm{O}(\log \mathrm{N})$

Implementation

- Binomial forest as an array of multiway trees
, FirstChild, Sibling pointers

21

Why Binomial?

25

Other Priority Queues

- Leftist Heaps
, $\mathrm{O}(\log \mathrm{N})$ time for insert, deletemin, merge
, The idea is to have the left part of the heap be long and the right part short, and to perform most operations on the left part.
- Skew Heaps ("splaying leftist heaps")
, $\mathrm{O}(\log \mathrm{N})$ amortized time for insert, deletemin, merge

Exercise Solution

1
(9)

