Graph Algorithms -

 Introduction and Topological SortCSE 326
Data Structures
Unit 11

Reading: Sections 9.1 and 9.2

What are graphs?

- Yes, this is a graph....

- But we are interested in a different kind of "graph"

Graphs

- Graphs are composed of
, Nodes (vertices)
, Edges (arcs) node

Varieties

- Nodes
, Labeled or unlabeled
- Edges
, Directed or undirected
, Labeled or unlabeled

Motivation for Graphs

- Consider the data structures we have looked at so far...
- Linked list: nodes with 1 incoming edge + 1 outgoing edge
- Binary trees/heaps: nodes with 1 incoming edge + 2 outgoing edges
- B-trees: nodes with 1 incoming edge + multiple outgoing edges

Motivation for Graphs

- How can you generalize these data structures?
- Consider data structures for representing the following problems...

CSE Course Prerequisites at UW

Representing a Maze

B

Nodes = junctions
Edge = door or passage

Representing Electrical

 Circuits

Information Transmission in a

 Computer Network

Precedence

Traffic Flow on Highways

Graph Definition

- A graph is simply a collection of nodes plus edges
, Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = "vertex")
- Formal Definition: A graph G is a pair (V, E) where
, V is a set of vertices or nodes
, E is a set of edges that connect vertices

Directed vs Undirected Graphs

- If the order of edge pairs $\left(v_{1}, v_{2}\right)$ matters, the graph is directed (also called a digraph): $\left(v_{1}, v_{2}\right) \neq\left(v_{2}, v_{1}\right)$

- If the order of edge pairs $\left(v_{1}, v_{2}\right)$ does not matter, the graph is called an undirected graph: in this case, (v_{1}, $\left.v_{2}\right)=\left(v_{2}, v_{1}\right)$

Graph Example

- Here is a directed graph $G=(V, E)$
, Each edge is a pair $\left(v_{1}, v_{2}\right)$, where v_{1}, v_{2} are vertices in V
, $V=\{A, B, C, D, E, F\}$
$E=\{(A, B),(A, D),(B, C),(C, D),(C, E),(D, E)\}$

Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if $\{u, v\}$ is an edge in G
, edge $e=\{u, v\}$ is incident with vertex u and vertex v
- The degree of a vertex in an undirected graph is the number of edges incident with it
, a self-loop counts twice (both ends count)
, denoted with $\operatorname{deg}(\mathrm{v})$

Undirected Terminology

Directed Terminology

- Vertex u is adjacent to vertex v in a directed graph G if (u, v) is an edge in G
, vertex u is the initial vertex of (u, v)
- Vertex v is adjacent from vertex u
, vertex v is the terminal (or end) vertex of (u, v)
- Degree
, in-degree is the number of edges with the vertex as the terminal vertex
, out-degree is the number of edges with the vertex as the initial vertex

Directed Terminology

Handshaking Theorem

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be an undirected graph with $|E|=m$ edges. Then

$$
2 \mathrm{~m}=\sum_{\mathrm{v} \in \mathrm{~V}} \operatorname{deg}(\mathrm{v})
$$

- Proof: Every edge contributes +1 to the degree of each of the two vertices it is incident with
, number of edges is exactly half the sum of deg(v)
, the sum of the $\operatorname{deg}(\mathrm{v})$ values must be even

Graph Representations

- Space and time are analyzed in terms of:
- Number of vertices, $\mathrm{n}=|\mathrm{V}|$ and
- Number of edges, $m=|E|$
- There are at least two ways of representing graphs:
- The adjacency matrix representation
- The adjacency list representation

Adjacency Matrix for a Digraph

	A	B	C	D	E	F
A	0	(1)	0	1	0	0
B	0	0	1	0	0	0
C	0	0	0	1	1	0
D	0	0	0	0	1	0
E	0	0	0	0	0	0
	0	0	0	0	0	0
	Space $=\|V\|^{2}$					

Adjacency Matrix

(F)

A	A	B	C	D		F
	0		0	1		0
B	(1)	0	1	0		0
C	0	1	0			0
D	1	0	1			0
E	0	0	1			0
	0		0			0
Space $=\|V\|^{2}$						

Adjacency List

For each v in $V, L(v)=$ list of w such that (v, w) is in E

Adjacency List for a Digraph

For each v in $V, L(v)=$ list of w such that (v, w) is in E

Trees

- An undirected graph is a tree if it is connected and contains no cycles.
- A directed graph is a directed tree if it has a root and its underlying undirected graph is a tree.
- $r \in \mathrm{~V}$ is a root if every vertex $\mathrm{V} \in \mathrm{V}$ is reachable from r; i.e., there is a directed path which starts in r and ends in v.

Alternative Definitions of Undirected Trees

- G is cycles-free, but if any new edge is added to G, a cycle is formed.
- for every pair of vertices u, v, there is a unique, simple path from u to v.
- G is connected, but if any edge is deleted from G, the connectivity of G is interrupted.
- G is connected and has $n-1$ edges.

Topological Sort

Topological Sort

Given a digraph $G=(V, E)$, find a linear ordering of its vertices such that:
for any edge (v, w) in E, v precedes w in the ordering

(F)

Topo sort - good example

Any linear ordering in which all the arrows go to the right
(F) is a valid solution

Note that F can go anywhere in this list because it is not connected. Also the solution is not unique.

Topo sort - bad example

Only acyclic graphs can be

 topologically sorted- A directed graph with a cycle cannot be topologically sorted.

of A, B, C, D

Topo sort algorithm - 1

Step 1: Identify vertices that have no incoming edges

- The "in-degree" of these vertices is zero

Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges

- Select one such vertex

Topo sort algorithm - 2

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

Continue until done

Repeat Step 1 and Step 2 until graph is empty (or until HALT due to cycles-only').

Example (cont') - B

Select B. Copy to sorted list. Delete B and its edges

C

Select C. Copy to sorted list. Delete C and its edges.

D

Select D. Copy to sorted list. Delete D and its edges.

- \Rightarrow (ABOD

D

Select E. Copy to sorted list. Delete E and its edges Select F. Copy to sorted list. Delete F and its edges.

($\quad \Rightarrow 000000$

E
Yes, we could select F earlier (in any step).
The topological sort is not necessarily unique.

Implementation

Translation $1 \begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$ array \qquad

Assume adjacency list representation

Calculate In-degrees

45

Maintaining Degree 0 Vertices

Calculate In-degrees

```
for i = 1 to n do D[i] := 0; endfor
for i = 1 to n do
    x := A[i];
    while x f null do
        D[x.value] := D[x.value] + 1;
        x := x.next;
    endwhile
endfor
Time Complexity? \(\mathrm{O}(\mathrm{n}+\mathrm{m})\).
```


Topological Sort Algorithm

Some Detail

1. Store each vertex's In-Degree in an array D
2. Initialize queue with all "in-degree=0" vertices
3. While there are vertices remaining in the queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1
(c) Enqueue any of these vertices whose In-Degree became zero
4. If all vertices are output then success, otherwise there is a cycle.

Topological Sort Analysis

- Initialize In-Degree array: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Initialize Queue with In-Degree 0 vertices: $\mathrm{O}(|\mathrm{V}|)$
- Dequeue and output vertex:
, |V| vertices, each takes only $\mathrm{O}(1)$ to dequeue and output: $\mathrm{O}(|\mathrm{V}|)$
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
, $\mathrm{O}(|\mathrm{E}|)$ (total out_degree of all vertices)
- For input graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ run time $=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
, Linear time!

```
Main Loop
while notEmpty(Q) do
    x := Dequeue(Q)
    Output(x)
    y := A[x];
    while y f null do
        D[y.value] := D[y.value] - 1;
        if D[y.value] = 0 then Enqueue(Q,y.value);
            y := y.next;
        endwhile
endwhile
```

Time complexity? O(out_degree(x)).

Topo Sort using a Stack (depth-first)
After each vertex is output, when updating In-Degree array, push any vertex whose In-Degree becomes zero

