
Graph Algorithms –
Introduction and
Topological Sort

CSE 326
Data Structures

Unit 11

Reading: Sections 9.1 and 9.2

2

What are graphs?

• Yes, this is a graph….

• But we are interested in a different kind of
“graph”

3

Graphs

• Graphs are composed of
› Nodes (vertices)

› Edges (arcs) node

edge

4

Varieties

• Nodes
› Labeled or unlabeled

• Edges
› Directed or undirected

› Labeled or unlabeled

5

Motivation for Graphs
• Consider the data structures we have

looked at so far…

• Linked list: nodes with 1 incoming
edge + 1 outgoing edge

• Binary trees/heaps: nodes with 1
incoming edge + 2 outgoing edges

• B-trees: nodes with 1 incoming edge
+ multiple outgoing edges

10

96 99

94

97

Value Next
node

Value Next
node

3 5

6

Motivation for Graphs

• How can you generalize these data
structures?

• Consider data structures for representing
the following problems…

7

CSE Course Prerequisites at
UW

321143

142

322

326

341370

378

401

421Nodes = courses
Directed edge = prerequisite

8

Representing a Maze

S

Nodes = junctions
Edge = door or passage

S

E

B

E

9

Representing Electrical
Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor

10

Precedence
S1 a=0;

S2 b=1;

S3 c=a+1

S4 d=b+a;

S5 e=d+1;

S6 e=c+d;

3

1 2

6

5

4Which statements must execute before S6?

S1, S2, S3, S4

Nodes = statements
Edges = precedence requirements

11

Information Transmission in a
Computer Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates

128

140

181
30

16

56

12

Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on
connecting highway

UW

13

Graph Definition

• A graph is simply a collection of nodes plus
edges
› Linked lists, trees, and heaps are all special cases

of graphs

• The nodes are known as vertices (node =
“vertex”)

• Formal Definition: A graph G is a pair (V, E)
where
› V is a set of vertices or nodes
› E is a set of edges that connect vertices

14

Graph Example

• Here is a directed graph G = (V, E)
› Each edge is a pair (v1, v2), where v1, v2 are vertices

in V
› V = {A, B, C, D, E, F}

E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

ED

F

15

Directed vs Undirected
Graphs

• If the order of edge pairs (v1, v2) matters, the graph is
directed (also called a digraph): (v1, v2) ≠ (v2, v1)

• If the order of edge pairs (v1, v2) does not matter, the
graph is called an undirected graph: in this case, (v1,
v2) = (v2, v1)

v1
v2

v1 v2

v3

v3

16

Undirected Terminology

• Two vertices u and v are adjacent in an
undirected graph G if {u,v} is an edge in G
› edge e = {u,v} is incident with vertex u and vertex

v

• The degree of a vertex in an undirected
graph is the number of edges incident with it
› a self-loop counts twice (both ends count)
› denoted with deg(v)

17

Undirected Terminology

A

B
C

ED

F

Degree = 3

Degree = 0

B is adjacent to C and C is adjacent to B
(A,B) is incident
to A and to B

Self-loop

18

Directed Terminology

• Vertex u is adjacent to vertex v in a directed
graph G if (u,v) is an edge in G
› vertex u is the initial vertex of (u,v)

• Vertex v is adjacent from vertex u
› vertex v is the terminal (or end) vertex of (u,v)

• Degree
› in-degree is the number of edges with the vertex

as the terminal vertex
› out-degree is the number of edges with the vertex

as the initial vertex

19

Directed Terminology

A

B
C

ED

F

In-degree = 2
Out-degree = 1

In-degree = 0
Out-degree = 0

B adjacent to C and C adjacent from B

20

Handshaking Theorem

• Let G=(V,E) be an undirected graph with
|E|=m edges. Then

• Proof: Every edge contributes +1 to the
degree of each of the two vertices it is
incident with
› number of edges is exactly half the sum of deg(v)
› the sum of the deg(v) values must be even

�
∈

=
Vv

deg(v)2m

21

• Space and time are analyzed in terms of:

• Number of vertices, n = |V| and

• Number of edges, m = |E|

• There are at least two ways of representing
graphs:

• The adjacency matrix representation

• The adjacency list representation

Graph Representations

22

A B C D E F

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 1 1 0

1 0 1 0 1 0

0 0 1 1 0 0

0 0 0 0 0 0 M(v, w) =
1 if (v, w) is in E

0 otherwise

A

B

C

D

E

F

Space = |V|2

A

B
C

ED
F

Adjacency Matrix

23

A B C D E F

0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

A

B

C

D

E

F

Space = |V|2

M(v, w) =
1 if (v, w) is in E

0 otherwise

A

B
C

ED
F

Adjacency Matrix for a
Digraph

24

B D

B D

C

A C E

D

E

A C

A

B

C

D

E

F

A

B
C

ED
F

Space = a |V| + 2 b |E|

For each v in V, L(v) = list of w such that (v, w) is in E
a b

Adjacency List

25

B D

E

D

C

a b

A

B

C

D

E

F

E

A

B
C

ED
F

For each v in V, L(v) = list of w such that (v, w) is in E

Space = a |V| + b |E|

Adjacency List for a Digraph

26

Trees

• An undirected graph is a tree if it is connected
and contains no cycles.

• A directed graph is a directed tree if it has a root
and its underlying undirected graph is a tree.

• r∈V is a root if every vertex v∈V is reachable
from r; i.e., there is a directed path which starts in
r and ends in v.

�

�
�

�

�

�

�
�

�
�

�

�

�

�

�		

27

Alternative Definitions of
Undirected Trees

• G is cycles-free, but if any new edge is added to G, a
cycle is formed.

• for every pair of vertices u,v, there is a unique, simple
path from u to v.

• G is connected, but if any edge is deleted from G, the
connectivity of G is interrupted.

• G is connected and has n–1 edges.
�

�
�

�

�

�

�

28

Topological Sort

321143
322

326

341370

378

401

421

Problem: Find an order in
which all these courses can
be taken.

Example: 142 à 143 à 378
à 370 à 321 à 341 à 322
à 326 à 421 à 401

In order to take a course, you must
take all of its prerequisites first

142

29

Given a digraph G = (V, E), find a linear ordering of
its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering

A

B
C

F

D E

Topological Sort

30

A

B
C

F

D E

EA DFB C

Any linear ordering in which
all the arrows go to the right
is a valid solution

Topo sort - good example

Note that F can go anywhere in this list because it is not connected.
Also the solution is not unique.

31

A

B
C

F

D E

DA EFB C

Any linear ordering in which
an arrow goes to the left
is not a valid solution

Topo sort - bad example

NO!
32

Paths and Cycles

• Given a digraph G = (V,E), a path is a
sequence of vertices v1,v2, …,vk such that:
› (vi,vi+1) in E for all 1 < i < k
› path length = number of edges in the path
› path cost = sum of costs of participating edges

• A path is a cycle if :
› k > 1 and v1 = vk

• G is acyclic if it has no cycles.

33

Only acyclic graphs can be
topologically sorted

• A directed graph with a cycle cannot be
topologically sorted.

A

B
C

F

D EThere is no
valid ordering
of A,B,C,D

34

Step 1: Identify vertices that have no incoming edges
• The “in-degree” of these vertices is zero

A

B
C

F

D E

Topo sort algorithm - 1

35

Step 1: Identify vertices that have no incoming edges
• If no such vertices, graph has only cycle(s)
• Topological sort not possible – Halt.

A

B
C

D
Example of an ‘only-
cycles’ graph

Topo sort algorithm - 1a

E

36

Step 1: Identify vertices that have no incoming edges
• Select one such vertex

A

B
C

F

D E

Select

Topo sort algorithm - 1b

37

A

B
C

F

D E

Step 2: Delete this vertex of in-degree 0 and all
its outgoing edges from the graph. Place it in the
output.

Topo sort algorithm - 2

A

38

A

B
C

F

D E

Repeat Step 1 and Step 2 until graph is empty
(or until HALT due to cycles-only’).

Select

Continue until done

39

A

B
C

F

D E

B

Select B. Copy to sorted list. Delete B and its edges.

Example (cont’) - B

40

A

C

F

D E

B C

Select C. Copy to sorted list. Delete C and its edges.

C

41

AF

D E

B C D

Select D. Copy to sorted list. Delete D and its edges.

D

42

AF

E

B C D E F

Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.

E, F

Yes, we could select F earlier (in any step).

The topological sort is not necessarily unique.

43

A B C D E F

Done

A

B
C

F

D E

44

A

B
C

F

D E

2 4

5

54

3

1

2

3

4

5

6

Assume adjacency list
representation

Implementation

A B C D E F
1 2 3 4 5 6Translation

array
value next

45

0

1

0

2

2

1In-Degree
array; or add a
field to array A

Calculate In-degrees

2 4

5

54

3

1

2

3

4

5

6

AD

46

Calculate In-degrees

f or i = 1 t o n do D[i] : = 0; endf or
f or i = 1 t o n do

x : = A[i] ;
whi l e x ≠ nul l do

D[x. val ue] : = D[x. val ue] + 1;
x : = x. next ;

endwhi l e
endf or

Time Complexity? O(n+m).

47

Key idea: Initialize and maintain a queue (or stack)
of vertices with In-Degree 0

1Queue 6

1

2 3
6

4 5

Maintaining Degree 0 Vertices

0

1

0

2

2

1

2 4

5

54

3

1

2

3

4

5

6

AD

48

After each vertex is output, when updating In-Degree array,
enqueue any vertex whose In-Degree becomes zero

1

Queue 6

Output

2
dequeue enqueue

1

2 3
6

4 5

Topo Sort using a Queue
(breadth-first)

0

0

0

1

2

1

2 4

5

54

3

1

2

3

4

5

6

AD

49

Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the

queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1
(c) Enqueue any of these vertices whose In-Degree

became zero

4. If all vertices are output then success,
otherwise there is a cycle.

50

Some Detail

Mai n Loop
whi l e not Empt y(Q) do

x : = Dequeue(Q)
Out put (x)
y : = A[x] ;
whi l e y ≠ nul l do

D[y. val ue] : = D[y. val ue] – 1;
i f D[y. val ue] = 0 t hen Enqueue(Q, y. val ue) ;
y : = y. next ;

endwhi l e
endwhi l e

Time complexity? O(out_degree(x)) .

51

Topological Sort Analysis

• Initialize In-Degree array: O(|V| + |E|)
• Initialize Queue with In-Degree 0 vertices: O(|V|)
• Dequeue and output vertex:

› |V| vertices, each takes only O(1) to dequeue and
output: O(|V|)

• Reduce In-Degree of all vertices adjacent to a vertex
and Enqueue any In-Degree 0 vertices:
› O(|E|) (total out_degree of all vertices)

• For input graph G=(V,E) run time = O(|V| + |E|)
› Linear time!

52

After each vertex is output, when updating In-Degree array,
push any vertex whose In-Degree becomes zero

1

Stack 2

Output

6
pop push

1

2 3
6

4 5

Topo Sort using a Stack
(depth-first)

0

0

0

1

2

1

2 4

5

54

3

1

2

3

4

5

6

AD

